Paper 2015

1. The area of the figure by the lines ax+by+c=0, ax-by+c=0, ax+by-c=0 and ax-by-c=0 is

a.
$$\frac{c^2}{ab}$$
 b. $\frac{2c^2}{ab}$ c. $\frac{c^2}{2ab}$ d. $\frac{c^2}{4ab}$

2. If a line is perpendicular to the line 5x - y = 0 and forms a triangle of area 5 square units with co-ordinate axes, then its equation is

- $x + 5y \pm 5\sqrt{2} = 0$ b. $x - 5y \pm 5\sqrt{2} = 0$ a. d. $5x - y \pm 5\sqrt{2} = 0$ $5x + y \pm 5\sqrt{2} = 0$ c. Consider an point P on the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ in the first quadrant. Let r and s represent its 3. distances from (4, 0) and (-4, 0) respectively, then (r + s) is equal to 10 unit b. 9 unit c. 8 unit d. 6 unit a. A straight line x = y + 2 touches the circle $4(x^2 + y^2) = r^2$. The value of r is 4. $\sqrt{2}$ $2\sqrt{2}$ a. b. c. 2 d. 1 The three lines 4x + 4y = 1, 8x - 3y = 2, y = 0 are 5. the sides of an isosceles triangle a. b. concurrent mutually perpendicular c. d. the sides of an equilateral triangle The line 3x + 4y - 24 = 0 intersects the *x*-axis at *A* and *y*-axis at *B*. Then the circumcentre of 6. the triangle OAB where O is the origin is (2, 3)b. (3, 3)a. (4, 3)None of the above d. c. The eccentricity of the hyperbola $16x^2 - 9y^2 = 1$ is 7. $\frac{3}{5}$ b. $\frac{5}{3}$ c. $\frac{4}{5}$ d. $\frac{5}{4}$ a. The product of the perpendiculars from the two points $(\pm 4,$ 8. 0) to the line $3x\cos\phi + 5y\sin\phi = 15$ is
 - a. 25 b. 16 c. 9 d. 8

1

By: Er. Vinay Bhabhra Mo.: 93145-33083

9.	If the centre of the circle passing through the origin is (3, 4), then the intercepts cut off by the							
	circl	e on x-axis and y-axis respectively	are					
	a.	3 unit and 4 unit	b.	6 unit and 4 unit				
	c.	3 unit and 8 unit	d.	6 unit and 8 unit				
10.	The	lines $2x = 3y = -z$ and $6x = -y =$	=4 <i>z</i> .					
	a.	are perpendicular	b.	are parallel				
	c.	intersect at an angle 45°	d.	intersect at an angle 60°				
11.	Two	straight lines passing through t	he poi	nt $A(3, 2)$ cut the line $2y = x+3$ and x-axis				
	perp	endicularly at P and Q respectively	y. The e	equation of the line PQ is				
	a.	7x + y - 21 = 0	b.	x + 7y + 21 = 0				
	c.	2x + y - 8 = 0	d.	x + 2y + 8 = 0				
12.	The	radius of the sphere $3x^2 + 3y^2 + 3z$	$x^{2} - 8x$	+4y+8z-15=0 is				
	a.	2 b. 3	c.	4 d. 5				
13.	The	direction ratios of the line perpen	dicular	to the lines with direction ratios $< 1, -2, -2 >$				
	and ·	< 0, 2, 1 > are						
	a.	< 2, -1, 2 >	b.	<-2, 1, 2>				
	c.	< 2, 1, -2 >	d.	<-2, -1, -2>				
14.	Wha	t are the co-ordinates of the foot	of the p	perpendicular drawn from the point (3, 5, 4) on				
	the p	blane $z = 0$?						
	a.	(0, 5, 4)	b.	(3, 5, 0)				
	c.	(3, 0, 4)	d.	(0, 0, 4)				
15.	The	lengths of the intercepts on the co	o-ordina	ate axes made by the plane $5x+2y+z-13=0$				
	are							
	a.	5, 2, 1 unit	b.	$\frac{13}{5}$, $\frac{13}{2}$, 13 unit				
	c.	$\frac{5}{13}$, $\frac{2}{13}$, $\frac{1}{13}$ unit	d.	1, 2, 5 unit				
For t	he nex	t three (03) items that follow:						
	Cons	sider the expansion of $(1+x)^{2n+1}$						
16.	If the	e coefficients of x^r and x^{r+1} are equivalent	ual in tl	the expansion, then r is equal to				
			_					
			2	$\neg <$				

							By: E	r. Vinay Bhabhra No.: 93145-33083
	a.	n	b.	$\frac{2n-1}{2}$	c.	$\frac{2n+1}{2}$	d.	<i>n</i> +1
17.	The a	verage of the	coeffic	ients of the tw	o midd	lle terms in tl	he expan	nsion is
	a.	$^{2n+1}C_{n+2}$	b.	$^{2n+1}C_{n}$	c.	$^{2n+1}C_{n-1}$	d.	${}^{2n}C_{n+1}$
18.	The s	um of the coer	fficient	s of all the ter	ms in tl	he expansion	ı is	
	a.	2^{2n-1}	b.	4^{n-1}	c.	2×4^n	d.	None of the above
19.	The <i>n</i>	th term of an	A.P. is	$\frac{3+n}{4}$, then the	e sum	of first 105 to	erms is	
	a.	270	b.	735	c.	1409	d.	1470
20.	A pol	ygon has 44 d	iagonal	ls. The numbe	er of its	sides is		
	a.	11	b.	10	c.	8	d.	7
21.	If p , q , r are in the geometric progression and a , b , c are in another geometric progression,							
	then ap, bq, cr are in							
	a.	Arithmetic p	rogress	sion	b.	Geometric	progress	sion
	c.	Harmonic pr	ogressi	on	d.	None of the	e above	
For th	e next	two (02) item	s that fo	ollow:				
	Consi	ider a triangle	ABC sa	atisfying				
	2 <i>a</i> sin	$n^2\left(\frac{C}{2}\right) + 2c\sin^2\theta$	$n^2\left(\frac{A}{2}\right)$	= 2a + 2c - 3b	,			
22.	The s	ides of the tria	ingle ar	re in				
	a.	G.P.			b.	A.P.		
	c.	H.P.			d.	Neither in (G.P. nor	in A.P. nor in H.P.
23.	sin A,	sin <i>B</i> , sin <i>C</i> a	re in					
	a.	G.P.			b.	A.P.		
	c.	H.P.			d.	Neither in (G.P. nor	in A.P. nor in H.P.
24.	If <i>p</i> =	$= \tan\left(-\frac{11\pi}{6}\right)$, q = ta	$ \ln\left(\frac{21\pi}{4}\right) $ and	$r = \cot$	$\left(\frac{283\pi}{6}\right)$, th	en whic	ch of the following is/are
	corre	ct?						
	1.	The value of	$p \times r$ i	s 2.				
	2.	p, q and r are	e in G.I	D .				
	Selec	t the correct a	nswer u	using the code	given	below:		
					1 ~			
				\geq	3	\leq		

							By:	Er. Vinay Mo.: 9314	Bhabhra 5-33083
	a.	1 only			b.	2 only			
	c.	Both 1 and	d 2		d.	Neither 1	nor 2		
25.	The	number of	ways in	n which 3 h	oliday	tickets can	be give	n to 20 empl	oyees of an
	orga	nization if ea	ach emp	loyee is eligi	ble for a	ny one or mo	ore of th	e tickets, is	
	a.	1140	b.	3420	c.	6840	d.	8000	
26.	Wha	t is the sum	of <i>n</i> tern	ns of the serie	es $\sqrt{2}$ +	$\sqrt{8} + \sqrt{18} + \sqrt{18}$	/32 +	?	
	a.	$\frac{n(n-1)}{\sqrt{2}}$			b.	$\sqrt{2}n(n+1)$)		
	c.	$\frac{n(n+1)}{\sqrt{2}}$			d.	$\frac{n(n+1)}{2}$			
27.	The	coefficients	of x^{99} in	the expansion	on of $(x$	-1)(x-2)(x	-3)((x-100) is	
	a.	5050	b.	5000	c.	-5050	d.	-5000	
28.		-(3-i)z + (3-i)z +	$(+i)\bar{z}+1$	=0 represent	ts a circl	e with			
	a.	centre (-3	, −1) and	d radius 3	b.	centre (-3	, 1) and	radius 3	
	c.	centre (-3	, −1) and	d radius 4	d.	centre (-3	, 1) and	radius 4	
29.	The	number of 3	B-digit ev	ven numbers	that car	n be formed	from the	e digits 0, 1, 2	, 3, 4 and 5,
	repe	tition of digi	ts being	not allowed,	is				
	a.	60	b.	56	c.	52	d.	48	
30.	If lo	$\log_8 m + \log_8 \frac{1}{6}$	$r = \frac{2}{3}$, th	en <i>m</i> is equa	l to				
	a.	24	b.	18	c.	12	d.	4	
31.	If di	ifferent word	ls are fo	ormed with a	all the l	etters of the	word '	AGAIN' and a	are arranged
	alph	abetically an	nong the	mselves as in	n a dictio	onary, the wo	ord at the	e 50th place wi	ll be
	a.	NAAGI	b.	NAAIG	с.	IAAGN	d.	IAANG	
32.	The	number of v	ways in	which a cric	ket tean	n of 11 playe	ers be cl	hosen out of a	batch of 15
	play	ers so that th	e captai	n of the team	is alway	ys included, i	S		
	a.	165	b.	364	c.	1001	d.	1365	
33.	In th	e expansion	of $\left(\sqrt{x}\right)$	$+\frac{1}{3x^2}\Big)^{10}$ the	value of	constant ter	m (indep	pendent of x) is	
	a.	5	b.	8	c.	45	d.	90	
34.	The	value of sin ²	$^{2}5^{\circ}+\sin^{2}$	$^{2}10^{\circ} + \sin^{2}15$	$^{\circ}+\sin^{2}2$	$20^{\circ} + \dots + \sin^2$	90° is		
					4	7			

							By:	Er. Vinay Mo.: 9314	Bhabhra 45-33083	
	a.	7	b.	8	c.	9	d.	$\frac{19}{2}$		
35.	On si	mplifying <u>sin</u>	$\frac{1^3 A + \sin A}{\sin A}$	$\frac{\sin 3A}{\sin 3A} + \frac{\cos^3 A}{\cos^3 A}$	$\frac{A-\cos 3}{\cos A}$	$\frac{3A}{-}$, we get				
	a.	sin 3A			b.	$\cos 3A$				
	c.	$\sin A + \cos A$	4		d.	3				
36.	The v	value of $\tan\left(2\right)$	$2 \tan^{-1} \frac{1}{5}$	$\left(\frac{1}{5}-\frac{\pi}{4}\right)$ is						
	a.	$-\frac{7}{17}$	b.	$\frac{5}{16}$	c.	$\frac{5}{4}$	d.	$\frac{7}{17}$		
37.	Two	poles are 10m	and 2	0m high. Th	e line jo	ining their	tops ma	kes an angle of	f 15° with the	
	horize	ontal. The dist	tance b	etween the p	oles is a	approximate	ely equal	l to		
	a.	$36 \cdot 3 \mathrm{m}$	b.	37·3 m	c.	38·3 m	d.	39·3 m		
38.	If g(.	$x) = \frac{1}{f(x)} \text{ and}$	$\int f(x)$	$= x, x \neq 0$, th	nen whic	ch one of th	e follow	ving is correct?		
	a.	f(f(g(g	(f(x)))))) = g(g(f	(g(f(x))))))				
	b.	f(f(g(g(g	(f(x)))))) = g(g(f(f(x))))) = g(g(f(x)))) = g(g(f(x))))	(g(f(x)))))				
	c.	f(g(f(g(g	(f(g(x	$\mathfrak{x}))))))) = g(g$	g(f(g(f	(x))))))				
	d. $f(f(g(g(f(x)))))) = f(f(f(g(f(x)))))$									
39.	Consider the following:									
	1.	$\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{4}{5} + \sin^{-1}\frac{4}{5$	$^{-1}\frac{3}{5} = \frac{2}{5}$	$\frac{\pi}{2}$						
	2.	$\tan^{-1}\sqrt{3} + \sin^{-1}\sqrt{3}$	$n^{-1}1 =$	$-\tan^{-1}(2+\sqrt{2})$	/3)					
	Whic	h of the above	e is/are	correct?						
	a.	1 only			b.	2 only				
	c.	Both 1 and 2	2		d.	Neither 1	nor 2			
40.	If A i	is an orthogo	nal ma	trix of order.	and	$B = \begin{bmatrix} 1 & 2 \\ -3 & 0 \\ 2 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \\ 0 & 2 \\ 5 & 0 \end{bmatrix}, t^{4}$	hen which of t	the following	
	is/are	correct?								
	1.	$ A = \pm 47$								
					5	77				

By: Er. Vinay Bhabhra Mo.: 93145-33083 2. AB = BASelect the correct answer using the code given below: 1 only b. 2 only a. Both 1 and 2 d. Neither 1 nor 2 c. If *a*, *b*, *c* are the sides of a triangle *ABC*, then $a^{\frac{1}{p}} + b^{\frac{1}{p}} - c^{\frac{1}{p}}$ where p > 1, is 41. always negative b. always positive a. always zero positive if 1 and negative if <math>p > 2d. c. $1-a \quad a-b-c \quad b+c$ If a, b, c are real numbers, then the value of the determinant $\begin{vmatrix} 1-b & b-c-a & c+a \end{vmatrix}$ is 42. $\begin{vmatrix} 1-c & c-a-b & a+b \end{vmatrix}$ 0 b. (a-b)(b-c)(c-a)a. c. $(a+b+c)^2$ d. $(a+b+c)^3$ If the point $z_1 = 1 + i$ where $i = \sqrt{-1}$ is the reflection of a point $z_2 = x + iy$ in the line 43. $\overline{iz} - iz = 5$, then the point z_2 is b. 4+ic. 1-id. -1-i1 + 4ia. If $\sin x + \sin y = a$ and $\cos x + \cos y = b$, then $\tan^2\left(\frac{x+y}{2}\right) + \tan^2\left(\frac{x-y}{2}\right)$ is equal to 44. $\frac{a^4 + b^4 + 4b^2}{a^2b^2 + b^4}$ b. $\frac{a^4 - b^4 + 4b^2}{a^2b^2 + b^4}$ a. c. $\frac{a^4 - b^4 + 4a^2}{a^2b^2 + a^4}$ d. None of the above A vertical tower standing on a leveled field is mounted with a vertical flag staff of length 3 45. m. From a point on the field, the angles of elevation of the bottom and tip of the flag staff are 30° and 45° respectively. Which one of the following gives the best approximation to the height of the tower? 3.90 m b. 4.00 m 4.10 m 4.25 m a. c. d. Let X be the set of all persons living in Delhi. The persons a and b in X are said to be related 46. if the difference in their ages is at most 5 years. The relation is a. an equivalence relation reflexive and transitive but not symmetric b. 6

By: Er. Vinay Bhabhra Mo.: 93145-33083

symmetric and transitive but not reflexive c. d. reflexive and symmetric but not transitive The matrix $A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & x-1 & 1 \\ 2 & 7 & x-3 \end{bmatrix}$ will have inverse for every real number *x* except for 47. b. $x = \frac{9 \pm \sqrt{5}}{2}$ a. $x = \frac{11 \pm \sqrt{5}}{2}$ d. $x = \frac{9 \pm \sqrt{3}}{2}$ c. $x = \frac{11 \pm \sqrt{3}}{2}$ If the value of the determinant $\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix}$ is positive, where $a \neq b \neq c$, then the value of *abc* 48. cannot be less than 1 b. is greater than -8 a. is less than -8d. c. must be greater than8 49. Consider the following statements in respect of the determinant $\left|\cos^2\frac{\alpha}{2} \quad \sin^2\frac{\alpha}{2}\right|$ $\sin^2\frac{\beta}{2}$ $\cos^2\frac{\beta}{2}$ where α , β are complementary angles The value of the determinant is $\frac{1}{\sqrt{2}}\cos\left(\frac{\alpha-\beta}{2}\right)$. 1. The maximum value of the determinant is $\frac{1}{\sqrt{2}}$. 2. Which of the above statements is/are correct? 2 only 1 only b. a. Neither 1 nor 2 Both 1 and 2 d. c. What is equal $(100000001)_2 - (0.0101)_2$ to? 50. b. $(512 \cdot 6875)_{10}$ $(512 \cdot 6775)_{10}$ a. d. $(512 \cdot 0909)_{10}$ c. $(512 \cdot 6975)_{10}$ If $A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & -3 & 4 \end{bmatrix}$, then the matrix X for which 2X + 3A = 0 holds true is 51. 7

Vinav Bhabhra Bv: Er. 3

			 N	No.: 93145-33083
	a. $\begin{bmatrix} -\frac{3}{2} & 0 & -3\\ -3 & -\frac{9}{2} & -6 \end{bmatrix}$	b.	$\begin{bmatrix} \frac{3}{2} & 0 & -3 \\ 3 & -\frac{9}{2} & -6 \end{bmatrix}$	
	c. $\begin{bmatrix} \frac{3}{2} & 0 & 3\\ 3 & \frac{9}{2} & 6 \end{bmatrix}$	d.	$\begin{bmatrix} -\frac{3}{2} & 0 & 3 \\ -3 & \frac{9}{2} & -6 \end{bmatrix}$	
52.	If z_1 and z_2 are complex numbers with	$ z_1 = z_2 $, then which of the f	ollowing is/are correct?
	1. $z_1 = z_2$			
	2. Real part of z_1 = Real part of z_2			
	3. Imaginary part of z_1 = Imaginar	y part of	f z_2	
	Select the correct answer using the cod	le given	below:	
	a. 1 only b. 2 only	c.	3 only d.	None
53.	If $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -2 \\ 6 & 12 \\ 5 & 10 \end{bmatrix}$	$\begin{bmatrix} -1\\6\\5 \end{bmatrix}$, the set of the set	hen which of the follo	owing is/are correct?
	1. <i>A</i> and <i>B</i> commute			
	2. <i>AB</i> is a null matrix			
	Select the correct answer using the cod	le given	below:	
	a. 1 only	b.	2 only	
	c. Both 1 and 2	d.	Neither 1 nor 2	
54.	The number of real roots of the equation	on $x^2 - 3$	3 x +2=0 is	
	a. 4 b. 3	c.	2 d.	1
55.	If an sum of the roots of the equation	$ax^2 + b$	bx + c = 0 is equal to	the sum of their squares,
	then			
	a. $a^2 + b^2 = c^2$	b.	$a^2 + b^2 = a + b$	
	c. $ab+b^2=2ac$	d.	$ab-b^2=2ac$	
56.	If $A = \{x \in \Box : x^2 + 6x - 7 < 0\}$ and $B =$	$= \left\{ x \in \Box \right\}$	$: x^2 + 9x + 14 > 0 \}$, th	en which of the following
	is/are correct?			
	1. $(A \cap B) = (-2, 1)$			
		2	57	
	\geq	8		

							By: I	Er. Vina Mo • 93	y Bhabhra 145-33083
	2.	$(A \setminus B) =$	(-7, -2))				WOII 95	143-33003
	Sele	ct the correc	et answer	using the c	ode given	below:			
	a.	1 only			b.	2 only			
	c.	Both 1 an	nd 2		d.	Neither	1 nor 2		
57.	A, B	, C and D ar	e four se	ts such that	$A \cap B =$	$C \cap D = \phi$. Consider	the following	ng:
	1.	$A \cup C$ an	$\mathrm{d}B\cup D$	are always	disjoint.				
	2.	$A \cap C$ an	$\mathrm{d}B\cap D$	are always	disjoint.				
	Whi	ch of the ab	ove state	ments is/are	e correct?				
	a.	1 only			b.	2 only			
	c.	Both 1 an	nd 2		d.	Neither	1 nor 2		
58.	If A	is an invert	tible mat	rix of orde	r n and k	is any po	sitive real	number, the	en the value of
	[det	$(kA)]^{-1}$ is							
	a.	k^{-n}	b.	k^{-1}	с.	k^n	d.	nk	
59	The	value of the	- infinite	product $6^{\frac{1}{2}}$	$\frac{1}{8} \times 6^{\frac{1}{2}} + 6^{\frac{3}{8}}$	$\times 6^{\frac{1}{4}} \times 1$	is		
57.	2	6	h	36	хо то С	216	h	20	
60	u. If th	e roots of th	e equatio	$x^2 - nr +$	m = 0 dif	for by 1 th	u.		
00.	11 UI	$n^2 \qquad 4m$	1 - 0	m x - nx +	m = 0 un	$n^2 \perp 4m$	1 = 0		
	a.	n = 4m -	-1 - 0		U.	n + 4m	1 - 1 = 0		
61	C. Thre	m + 4n +	-1=0	t random fr	u.	m - 4n	l-1=0	without rang	ating any digit
01.	Wha	t is the prob	vahility th	at the prod	uct is odd	9, 4, 5, 0, 7	, o and 9 v	villiout repe	ating any digit.
	vv 11a	γ	aonity ti	7		. 5		5	
	a.	$\frac{2}{3}$	b.	$\frac{7}{48}$	с.	$\frac{3}{42}$	d.	$\frac{3}{108}$	
62.	Two	events A ar	nd <i>B</i> are a	such that P	(not B) = 0	$0.8, P(A \cup A)$	$B) = 0.5 \mathrm{an}$	nd $P(A/B) =$	0.4. Then $P(A)$
	is eq	ual to							
	a.	0.28	b.	0.32	с.	0.38	d.	None of t	he above
63.	If m	ean and var	iance of	a Binomia	l variate X	X are 2 and	d 1 respect	tively, then	the probability
	that	X takes a va	lue great	er than 1 is					
	a.	2	b.	4	c.	7	d.	<u>11</u>	
		3		5		8		16	
					9				

							By: E	Er. Vinay Bh Mo.: 93145-	abhra 33083
64.	Sever	n unbiased co	oins are	tossed 128 tin	mes. In	how many th	rows w	ould you find at l	east three
	heads	;?							
	a.	99	b.	102	c.	103	d.	104	
65.	A coi	in is tossed fi	ive time	es. What is th	e prob	ability that he	ads are	observed more t	han three
	times	?							
	a.	$\frac{3}{16}$	b.	$\frac{5}{16}$	c.	$\frac{1}{2}$	d.	$\frac{3}{32}$	
66.	The g	geometric me	an of t	he observatio	ons x_1 , x_2	x_2, x_3, \ldots, x_n	is <i>G</i> ₁ . 7	The geometric me	an of the
	obser	vations y_1 , y	2, <i>y</i> ₃ ,	$\dots y_n$ is G_2 .	The ge	ometric mean	of obs	servations $\frac{x_1}{y_1}$, $\frac{x_2}{y_2}$	$\frac{x_2}{y_3}, \frac{x_3}{y_3}, \dots$
	$\frac{x_n}{y_n}$ is								
	a.	G_1G_2	b.	$\mathrm{In}(G_1G_2)$	c.	$rac{G_1}{G_2}$	d.	$\ln\!\left(rac{G_1}{G_2} ight)$	
67.	The a	rithmetic me	an of 1,	8, 27, 64,	up to	<i>n</i> terms is given	ven by		
	a.	$\frac{n(n+1)}{2}$	b.	$\frac{n(n+1)^2}{2}$	c.	$\frac{n(n+1)^2}{4}$	d.	$\frac{n^2(n+1)^2}{4}$	
68.	An u	nbiased coin	in toss	ed until the	first he	ad appears of	r until t	four tosses are co	ompleted,
	which	never happen	s earlier	r. Which of th	ne follo	wing statemen	nts is/ar	re correct?	
	1.	The probab	ility tha	tt no head is c	observe	d is $\frac{1}{16}$.			
	2.	The probab	ility tha	t the experim	ent end	ls with three t	osses is	$\frac{1}{8}$.	
	Selec	t the correct a	answer	using he code	e given	below:			
	a.	1 only			b.	2 only			
	c.	Both 1 and	2		d.	Neither 1 n	or 2		
69.	If $x \in$	[0, 5], then v	what is	the probabilit	ty that .	$x^2 - 3x + 2 \ge 0$)?		
	a.	$\frac{4}{5}$	b.	$\frac{1}{5}$	c.	$\frac{2}{5}$	d.	$\frac{3}{5}$	
70.	A bag	g contains 4 v	white ar	nd 2 black ba	lls and	another bag c	ontains	3 white and 5 bl	ack balls.
	If one	e ball is draw	n from	each bag, the	en the p	probability the	it one b	all is white and o	ne ball is
	DIACK	. 15			<u> </u>				
				\geq	10				

							By: E	ir. Vinay Bhabhra No • 93145-33083
		5		13		1	•	2
	a.	$\frac{3}{24}$	b.	$\frac{13}{24}$	c.	$\frac{1}{4}$	d.	$\frac{2}{3}$
71.	A pro	blem in statis	stics is	given to thre	e stude	nts A, B and	l C wh	nose chances of solving it
	indepe	endently are	$\frac{1}{2}$, $\frac{1}{3}$ ar	nd $\frac{1}{4}$ respectiv	vely. T	he probability	y that t	he problem will be solved
	is							
	a.	$\frac{1}{12}$	b.	$\frac{11}{12}$	c.	$\frac{1}{2}$	d.	$\frac{3}{4}$
72.	An ins	surance comp	any ins	ured 2000 sco	oter dr	ivers, 4000 ca	ar drive	ers and 6000 truck drivers.
	The p	robabilities of	f an acc	ident involvi	ng a sc	ooter driver,	car dri	ver and a truck driver are
	0.01, 0	0.03 and 0.15	5 respec	ctively. One	of the i	insured perso	ons me	ets with an accident. The
	probat	oility that the	person	is a scooter d	river is			
	a.	$\frac{1}{52}$	b.	$\frac{3}{52}$	с.	$\frac{15}{52}$	d.	$\frac{19}{52}$
73.	A coir	is tossed 5 ti	imes. Tl	ne probability	that ta	il appears an	odd nu	mber of times, is
	a.	$\frac{1}{2}$	b.	$\frac{1}{3}$	c.	$\frac{2}{5}$	d.	$\frac{1}{5}$
74.	The r	egression co	efficien	ts of a biva	ariate d	istribution a	re –0.	64 and -0.36. Then the
	correla	ation coefficie	ent of th	e distribution	ı is			
	a.	0.48	b.	-0.48	c.	0.50	d.	-0.50
75.	What	is the probab	oility that	at the sum of	f any tv	vo different s	single	digit natural numbers is a
	prime	number?						
	a.	$\frac{5}{27}$	b.	$\frac{7}{18}$	c.	$\frac{1}{3}$	d.	None of the above
For th	e next t	two (02) item	s that fo	ollow:				
	Consid	der the function	on					
	f(x) =	$=\left(\frac{1}{x}\right)^{2x^2}$, wh	ere $x > 0$	0				
76.	At wh	at value of x	does the	e function atta	in max	imum value?		
	a.	е	b.	√e	c.	$\frac{1}{\sqrt{e}}$	d.	$\frac{1}{e}$
77.	The m	aximum valu	e of the	function is				
					11	K		
L				1				

							By: E	Er. Vinay Bhabhra Mo.: 93145-33083
	a.	е	b.	$e^{\frac{2}{e}}$	c.	$e^{\frac{1}{e}}$	d.	$\frac{1}{e}$
For t	he next	t two (02) iten	ns that	follow:				
	Cons	sider $f'(x) = -$	$\frac{x^2}{2} - kx$	+1 such that	<i>f</i> (0) =	0 and $f(3)$	=15	
78.	The	value of <i>k</i> is						
	a.	$\frac{5}{3}$	b.	$\frac{3}{5}$	c.	$-\frac{5}{3}$	d.	$-\frac{3}{5}$
79.	$f"\left(\cdot \right)$	$\left(-\frac{2}{3}\right)$ is equal	to					
	a.	-1	b.	$\frac{1}{3}$	c.	$\frac{1}{2}$	d.	1
For t	he next	t two (02) iten	ns that	follow:				
	Cons	sider the funct	ion					
	f(x)	$=-2x^3-9x^2$	-12x +	-1				
80.	The	function $f(x)$	is an i	ncreasing fur	nction ir	the interva	1	
	a.	(-2, -1)	b.	(-∞, -2)	c.	(-1, 2)	d.	$(-1,\infty)$
81.	The	function $f(x)$	is a de	ecreasing fun	ction in	the interval		
	a.	(-2, -1)			b.	(−∞, −2) (only	
	c.	$(-1,\infty)$ only	/		d.	(−∞, −2) ч	\cup (-1, ∞)	
For t	he next	t two (02) iten	ns that	follow:				
	Cons	sider the integ	rals					
	A =	$\int_{0}^{\pi} \frac{\sin x dx}{\sin x + \cos x}$	and <i>B</i>	$= \int_{0}^{\pi} \frac{\sin x dx}{\sin x - \cos x}$	$\frac{x}{\cos x}$			
82.	Whic	ch of the follo	wing is	correct?				
	a.	A = 2B			b.	B = 2A		
	c.	A = B			d.	A = 3B		
83.	Wha	t is the value of	of B?					
	a.	$\frac{\pi}{4}$	b.	$\frac{\pi}{2}$	c.	$\frac{3\pi}{4}$	d.	π
For t	he next	t two (02) iten	ns that	follow:				
					12	7		

Consider the function

$$f(x) = \begin{cases} -2\sin x & \text{if } x \le -\frac{\pi}{2} \\ f(x) = \begin{cases} -2\sin x & \text{if } x \le -\frac{\pi}{2} \\ \cos x & \text{if } x \ge \frac{\pi}{2} \\ \cos x & \text{if } x \ge \frac{\pi}{2} \end{cases}$$
which is continuous everywhere.
84. The value of *A* is
a. 1 b. 0 c. -1 d. -2
85. The value of *B* is
a. 1 b. 0 c. -1 d. -2
86. The degree of the differential equation $\frac{dy}{dx} - x = \left(y - x\frac{dy}{dx}\right)^{-1}$ is
a. 2 b. 3 c. 4 d. 5
87. The solution of
 $\frac{dy}{dx} = \sqrt{1 - x^2 - y^2 + x^2y^2}$ is
a. $\sin^{-1}y = \sin^{-1}x + c$ b. $2\sin^{-1}y = \sqrt{1 - x^2} + \sin^{-1}x + c$
c. $2\sin^{-1}y = x\sqrt{1 - x^2} + \sin^{-1}x + c$ d. $2\sin^{-1}y = \sqrt{1 - x^2} + \cos^{-1}x + c$
where c is an arbitrary constant
88. The differential equation of the family of circles passing through the origin and having
centres on the x-axis is
a. $2xy\frac{dy}{dx} = x^2 - y^2$ b. $2xy\frac{dy}{dx} = y^2 - x^2$
c. $2xy\frac{dy}{dx} = x^2 + y^2$ d. $2xy\frac{dy}{dx} + x^2 + y^2 = 0$
89. The order and degree of the differential equation of parabolas having vertex at the origin and
focus at $(a, 0)$ where $a > 0$, are respectively
a. 1, 1 b. 2, 1 c. 1, 2 d. 2, 2
90. $f(xy) = f(x) + f(y)$ is true for all
a. Polynomial functions f b. Trigonometric functions f

					By: Er. Vinay Bhabhra Mo • 93145-33083
	c.	Exponential fund	ctions f	d.	Logarithmic functions f
91.	Cons	sider the following	statements:		
	1.	The function $f($	$x) = x^2 + 2\cos x$	t is incr	reasing in the interval $(0, \pi)$
	2.	The function $f($	$x) = \operatorname{In}\left(\sqrt{1 + x^2}\right)$	(-x) is	decreasing in the interval $(-\infty, \infty)$
	Whic	ch of the above stat	tements is/are c	orrect?	
	a.	1 only		b.	2 only
	c.	Both 1 and 2		d.	Neither 1 nor 2
92.	The	derivative f $In(x +$	sinx) with respe	ect to (x	$(x + \cos x)$ is
	a.	$\frac{1+\cos x}{(x+\sin x)(1-\sin x)}$	1 <i>x</i>)	b.	$\frac{1-\cos x}{(x+\sin x)(1+\sin x)}$
	c.	$\frac{1-\cos x}{(x-\sin x)(1+\cos x)}$	$\overline{(\mathbf{s} x)}$	d.	$\frac{1+\cos x}{(x-\sin x)(1-\cos x)}$
93.	If y :	$= \cot^{-1} \left[\frac{\sqrt{1 + \sin x}}{\sqrt{1 + \sin x}} \right]$	$\left[+ \sqrt{1 - \sin x} - \sqrt{1 - \sin x} \right]$, w	where 0	$x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to
	a.	$\frac{1}{2}$		b.	2
	c.	$\sin x + \cos x$		d.	$\sin x - \cos x$
94.	The	function $f(x) = \frac{x^2}{e^x}$	- is monotonica	lly incr	reasing if
	a.	x < 0 only		b.	x > 2 only
	c.	0 < x < 2		d.	$x \in (-\infty, 0) \cup (2, \infty)$
95.	If x^a	$y^b = (x-y)^{a+b}$, the	en the value of	$\frac{dy}{dx} - \frac{y}{x}$	is equal to
	a.	$\frac{a}{b}$ b.	$\frac{b}{a}$	c.	1 d. 0
96.	If f	$:\Box \rightarrow \Box, g:\Box \rightarrow \Box$	be two functi	ions giv	ven by
	f(x)	=2x-3 and $g(x)$	$x^{3} + 5$, then	$(f \circ g)^{-}$	$^{-1}(x)$ is equal to
	a.	$\left(\frac{x+7}{2}\right)^{\frac{1}{3}} \qquad \text{b.}$	$\left(\frac{x-7}{2}\right)^{\frac{1}{3}}$	c.	$\left(x - \frac{7}{2}\right)^{\frac{1}{3}}$ d. $\left(x + \frac{7}{2}\right)^{\frac{1}{3}}$
			\geq	14	13

Г

If 0 < a < b, then $\int_{-\infty}^{b} \frac{|x|}{x} dx$ is equal to 97. a. |b| - |a| b. |a| - |b| c. $\frac{|b|}{|a|}$ d. 0 $\int_{-\infty}^{2\pi} \sin^5\left(\frac{x}{4}\right) dx$ is equal to 98. a. $\frac{8}{15}$ b. $\frac{16}{15}$ c. d. 0 If $f(x) = \frac{\sin(e^{x-2}-1)}{\ln(x-1)}$, then $\lim_{x \to 2} f(x)$ is equal to 99. -1 b. -20 c. d. 1 a. 100. Consider the following statements: $f(x) = \text{In } x \text{ is an increasing function on } (0, \infty).$ 1. $f(x) = e^{x} - x$ (In x) is an increasing function on $(1, \infty)$ 2. Which of the above statements is/are correct? b. 2 only a. 1 only d. Both 1 and 2 Neither 1 nor 2 c. 101. If $s = \sqrt{t^2 + 1}$, then $\frac{d^2s}{dt^2}$ is equal to a. $\frac{1}{c}$ b. $\frac{1}{c^2}$ c. $\frac{1}{c^3}$ d. $\frac{1}{c^4}$ 102. Consider the following statements: Statement 1: The function $f:\Box \to \Box$ such that $f(x) = x^3$ for all $x \in \Box$ is one-one. Statement 2: $f(a) = f(b) \Longrightarrow a = b$ for all $a, b \in \Box$ if the function f is one-one. Which one of the following is correct in respect of the above statements? Both the statements are true and Statement 2 is the correct explanation of Statement 1. a. Both the statements are true and Statement 2 is not the correct explanation of b. Statement 1. Statement 1 is true but Statement 2 is false. c. d. Statement 1 is false but Statement 2 is true.

15

 $\int \frac{dx}{1+e^{-x}}$ is equal to 103. $1 + e^{x} + c$ a. b. $\ln(1+e^{-x})+c$ $\ln(1+e^x)+c$ d. $2 \ln(1 + e^{-x}) + c$ c. where c is the constant of integration $\int x |x| dx$ is equal to 104. b. $\frac{2}{3}$ c. 2 0 d. -2a. The area bounded by the coordinate axes and the curve $\sqrt{x} + \sqrt{y} = 1$, is 105. b. $\frac{1}{2}$ square unit 1 square unit a. d. $\frac{1}{\epsilon}$ square unit c. $\frac{1}{2}$ square unit The area of the square, one of whose diagonals is $3\hat{i} + 4\hat{j}$ is 106. 12.5 square unit 12 square unit b. a. d. c. 25 square unit 156.25 square unit ABCD is a parallelogram and P is the point of intersection of the diagonals. If O is the origin, 107. then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$ is equal to $4\overrightarrow{OP}$ $2\overrightarrow{OP}$ \overline{OP} b. c. d. Null vector a. If \vec{b} and \vec{c} are the position vectors of the points B and C respectively, then the position 108. vector of the point D such that $\overline{BD} = 4\overline{BC}$ is $4(\vec{c}-\vec{b})$ b. $-4(\vec{c}-\vec{b})$ c. $4\vec{c}-3\vec{b}$ d. $4\vec{c}+3\vec{b}$ a. If the position vector \vec{a} of the point (5, n) is such that $|\vec{a}|=13$, then the value/values of n can 109. be ± 8 b. ± 12 d. 12 only a. c. 8 only If $|\vec{a}|=2$ and $|\vec{b}|=3$, then $|\vec{a}\times\vec{b}|^2 + |\vec{a}\cdot\vec{b}|^2$ is equal to 110. 72 b. 64 c. 48 d. 36 a. Consider the following inequalities in respect of vectors \vec{a} and \vec{b} : 111. 16

				By: Er. Vinay Bhabhra Mo.: 93145-33083
	1.	$ \vec{a} + \vec{b} \le \vec{a} + \vec{b} $		
	2.	$ \vec{a} - \vec{b} \ge \vec{a} - \vec{b} $		
	Whic	h of the above is/are correct?		
	a.	1 only	b.	2 only
	c.	Both 1 and 2	d.	Neither 1 nor 2
112.	If the	e magnitude of difference of two	unit vec	ctors is $\sqrt{3}$, then the magnitude of sum of the
	two v	vectors is		
	a.	$\frac{1}{2}$ unit b. 1 unit	C.	2 unit d. 3 unit
113.	If the	e vectors $\alpha \hat{i} + \alpha \hat{j} + \gamma \hat{k}$, $\hat{i} + \hat{k}$ and	$\gamma \hat{i} + \gamma$	$\hat{j} + \beta \hat{k}$ lie on a plane, where α , β and γ are
	distin	ct non-negative numbers, then γ is	5	
	a.	Arithmetic mean of α and β	b.	Geometric mean of α and β
	c.	Harmonic mean of α and β	d.	None of the above
114.	The	vectors \vec{a} , \vec{b} , \vec{c} and \vec{d} are such	1 that	$\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$. Which of the
	follow	wing is/are correct?		
	1.	$\left(\vec{a} - \vec{d}\right) \times \left(\vec{b} - \vec{c}\right) = \vec{0}$		
	2.	$\left(\vec{a}\times\vec{b}\right)\times\left(\vec{c}\times\vec{d}\right)=\vec{0}$		
	Selec	t the correct answer using the code	e given	below:
	a.	1 only	b.	2 only
	c.	Both 1 and 2	d.	Neither 1 nor 2
115.	The v	value of $\int_{a}^{b} \frac{x^{7} + \sin x}{\cos x} dx$ where $a + b$	<i>b</i> = 0 is	
	a.	$2b - a\sin(b - a)$	b.	$a + 3b\cos(b-a)$
	c.	$\sin a - (b-a)\cos b$	d.	0
116.	If $f($	$x = \sqrt{25 - x^2}$, then what is $\lim_{x \to 1} \frac{f}{f}$	$\frac{(x)-f}{x-1}$	$\frac{1}{1}$ equal to?
	a.	$\frac{1}{5}$ b. $\frac{1}{24}$	c.	$\sqrt{24}$ d. $-\frac{1}{\sqrt{24}}$
117.	Cons	ider the function		
			17	

By: Er. Vinay Bhabhra Mo.: 93145-33083

 $f(x) = \begin{cases} ax - 2 & \text{for} & -2 < x < -1 \\ -1 & \text{for} & -1 \le x \le 1 \\ a + 2(a - 1)^2 & \text{for} & 1 < x < 2 \end{cases}$ What is the value of a for which f(x) is continuous at x = -1 and x = 1? b. 1 c. 0 d. 2 a. -1 The function $f(x) = \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x}$ is not defined at $x = \pi$. The value of f(x) so that f(x) is 118. continuous at $x = \pi$ is a. $-\frac{1}{2}$ b. $\frac{1}{2}$ c. -1 d. 1 119. Consider the following functions: 1. $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$ 2. $f(x) = \begin{cases} 2x+5 & \text{if } x > 0\\ x^2+2x+5 & \text{if } x \le 0 \end{cases}$ Which of the above functions is/are derivable at x = 0? b. 2 only a. 1 only d. c. Both 1 and 2 Neither 1 nor 2 120. The domain of the function $f(x) = \frac{1}{\sqrt{|x| - x}}$ is a. $[0, \infty)$ b. $(-\infty, 0)$ c. $[1, \infty)$ d. $(-\infty, 0]$ 18