							By: I	Er. Vinay Bhabhra Mo.: 93145-33083		
				F	Paper 2	014				
For	the next	t three (03) ite	ems tha	t follow:						
A st	raight li	ine passes thro	ough (1	, –2, 3) and p	erpendi	cular to the pla	ane $2x$	z+3y-z=7.		
1.	Wha	t are the direc	tion rat	tios of normal	l to plan	ne?				
	a.	< 2, 3, -1>	b.	< 2, 3, 1>	c.	<-1, 2, 3>	d.	None of the above		
2.	Whe	re does the lir	ne meet	the plane?						
	a.	(2, 3, -1)	b.	(1, 2, 3)	c.	(2, 1, 3)	d.	(3, 1, 2)		
3.	Wha	t is the image	of the	point (1, -2, 3	3) in the	e plane?				
	a.	(2, -1, 5)	b.	(-1, 2, -3)	c.	(5, 4, 1)	d.	None of the above		
For	the next	t two (02) iter	ns that	follow:						
Con	sider th	e spheres x^2 -	$+y^2+z$	$x^2 - 4y + 3 = 0$	and x^2	$x^2 + y^2 + z^2 + 2x$	+4 <i>z</i> -	4 = 0.		
4.	What is the distance between ht centres of the two spheres?									
	a.	5 unit	b.	4 unit	c.	3 unit	d.	2 unit		
5.	Cons	sider the follo	wing st	atements:						
	1.	The two spl	heres in	ntersect each	other.					
	2.	The radius	of first	sphere is less	than th	at of second sp	phere.			
	Whie	ch of the abov	ve state	ments is/are c	orrect?					
	a.	1 only	b.	2 only	c.	Both 1 and 2	2 d.	Neither 1 nor 2		
For	the next	t three (03) ite	ems tha	t follow:						
The	vertice	s of a triangle	ABC a	are A(2, 3, 1),	B(-2, 2	(2, 0) and $C(0, 1)$	l, -1).			
6.	Wha	t is the cosine	of ang	le ABC?						
	a.	$\frac{1}{\sqrt{3}}$	b.	$\frac{1}{\sqrt{2}}$	c.	$\frac{2}{\sqrt{6}}$	d.	None of the above		
7.	Wha	t is the area of	f the tri	angle?						
	a.	$6\sqrt{2}$ square	e unit		b.	$3\sqrt{2}$ square	unit			
	c.	$10\sqrt{3}$ squar	re unit		d.	None of the	above			
8.	Wha	t is the magni	tude of	the line joini	ng mid	points of the s	ides A	C and BC?		
	a.	$\frac{1}{\sqrt{2}}$ unit	b.	1 unit	с.	$\frac{3}{\sqrt{2}}$ unit	d.	2 unit		
For	the next	t two (02) iter	ns that	follow:						
Con	sider th	e vectors $\vec{a} =$	$\hat{i}-2\hat{j}$	$+\hat{k}$ and $\vec{b}=4$	$\hat{i} - 4\hat{j} +$	$7\hat{k}$.				
					1	77				
					-					

Г

By: Er. Vinay Bhabhra Mo.: 93145-33083 What is the scalar projection of \vec{a} on \vec{b} ? 9. 19/9 1 b. c. 17/9d. 23/9a. 10. What is the vector perpendicular to both the vectors? $-10\hat{i} - 3\hat{i} + 4\hat{k}$ b. $-10\hat{i} + 3\hat{i} + 4\hat{k}$ a. $10\hat{i} - 3\hat{i} + 4\hat{k}$ c. d. None of the above For the next two (02) items that follow: Let a vector \vec{r} make angles 60°, 30° with x and y-axes respectively. What angle does \vec{r} make with *z*-axis? 11. a. 30° b. 60° 90° d. 120° c. What are the direction cosines of \vec{r} ? 12. a. $\left\langle \frac{1}{2}, \frac{\sqrt{3}}{2}, 0 \right\rangle$ b. $\left\langle \frac{1}{2}, -\frac{\sqrt{3}}{2}, 0 \right\rangle$ d. $\left\langle -\frac{1}{2}, \frac{\sqrt{3}}{2}, 0 \right\rangle$ c. $\left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right\rangle$ For the next two (02) items that follow: Let $|\vec{a}| = 7$, $|\vec{b}| = 11$, $|\vec{a} + \vec{b}| = 10\sqrt{3}$ What is $\left| \vec{a} - \vec{b} \right|$ equal to? 13. $2\sqrt{2}$ $2\sqrt{10}$ b. a. 10 с. 5 d. What is the angle between $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$? 14. b. $\frac{\pi}{3}$ c. $\frac{\pi}{6}$ a. d. None of the above A line passes through the points (6, -7, -1) and (2, -3, 1). What are the direction ratios of the 15. line? < 4, -4, 2 > b. <4,4,2> a. d. < 2, 1, 1 > c. <-4, 4, 2> From an aeroplane above a straight road the angles of depression of two positions at a 16. distance 20 m apart on the road are observed to be 30° and 45°. The height of the aeroplane above the ground is:

2

				By: Er. Vinay Bhabhra Mo.: 93145-33083
	a.	$10\sqrt{3}$ m	b.	$10(\sqrt{3}-1)$ m
	c.	$10(\sqrt{3}+1)$	d.	20 m
17.	Cons	sider the following statements:		
	1.	There exists no triangle ABC for	whicl	$h \sin A + \sin B = \sin C.$
	2.	If the angles of a triangle are	in the	ratio 1:2:3, then its sides will be in the ratio
		$1:\sqrt{3}:2.$		
	Whi	ch of the above statements is/are co	orrect?	
	a.	1 only	b.	2 only
	c.	Both 1 and 2	d.	Neither 1 nor 2
18.	Cons	sider the following statements:		
	1.	$\sin x + \cos x $ is always positive	ve.	
	2.	$\sin(x^2) + \cos(x^2)$ is always posit	ive.	
	Whie	ch of the above statements is/are co	orrect?	
	a.	1 only	b.	2 only
	c.	Both 1 and 2	d.	Neither 1 nor 2
19.	Wha	tt is $\frac{1+\sin A}{1-\sin A} - \frac{1-\sin A}{1+\sin A}$ equal to?		
	a.	$\sec A - \tan A$	b.	$2 \sec A \cdot \tan A$
	c.	$4 \sec A \cdot \tan A$	d.	$4\operatorname{cosec} A \cdot \operatorname{cot} A$
20.	Wha	tt is $\frac{\cot 224^\circ - \cot 134^\circ}{\cot 226^\circ + \cot 316^\circ}$ equal to?		
	a.	– cosec 88°	b.	– cosec 2°
	c.	– cosec 44°	d.	– cosec 46°
21.	Cons	sider the following statements:		
	1.	$\tan^{-1}1 + \tan^{-1}(0.5) = \pi/2$		
	2.	$\sin^{-1}(1/3) + \cos^{-1}(1/3) = \pi/2$		
	Whie	ch of the above statements is/are co	orrect?	
	a.	1 only	b.	2 only
	c.	Both 1 and 2	d.	Neither 1 nor 2
22.	If A	$+B+C = \pi$, then what is $\cos(A + \pi)$	B) + co	os C equal to?
			3	

							By: I	Er. Vina Mo · 93	ay Bhabhra 145-33083
	a.	0			b.	$2\cos C$			
	c.	$\cos C - \sin C$	n <i>C</i>		d.	2 sin C			
23.	What	t is cos 20°	+ cos 100	$0^{\circ} + \cos 140^{\circ}$	equal to	?			
	a.	2	b.	1	c.	1/2	d.	0	
24.	What	t is sin ⁻¹ sin	$\frac{3\pi}{5}$ equa	l to?					
	a.	$\frac{3\pi}{5}$	b.	$\frac{2\pi}{5}$	c.	$\frac{\pi}{5}$	d.	None of	the above
25.	What	t is $\sin^2(3\pi)$	$+\cos^{2}(4)$	π) + tan ² (5 π	:) equal t	o?			
	a.	0	b.	1	c.	2	d.	3	
26.	Cons	ider the foll	lowing po	oints:					
	1.	(0, 5)							
	2.	(2, -1)							
	3.	(3, -4)							
	Whic	ch of the abo	ove lie or	the line $3x$	+y = 5 a	and at a dist	ance $\sqrt{10}$	from (1, 2	2)?
	a.	1 only			b.	2 only			
	c.	1 and 2 or	nly		d.	1, 2 and 3	3		
27.	What	t is the equ	ation of	the line thro	ough (1,	2) so that	the segm	ent of the	line intercepted
	betw	een the axes	s is bisec	ted at this po	oint?				
	a.	2x - y = 4	4		b.	2x - y + c	4 = 0		
	c.	2x + y = c	4		d.	2x + y + c	4 = 0		
28.	What	t is the equ	uation of	straight lin	e passing	g through	the point	(4, 3) an	d making equal
	intere	cepts on the	coordina	ate axes?					
	a.	x + y = 7			b.	3x + 4y =	= 7		
	c.	x - y = 1			d.	None of t	he above	;	
29.	What	t is the equa	tion of th	ne line midw	ay betwe	en the lines	3x-4y	+12 = 0 ar	d 3x - 4y = 6?
	a.	3x - 4y -	9 = 0		b.	3x - 4y +	-9 = 0		
	c.	3x - 4y -	3 = 0		d.	3x - 4y +	-3 = 0		
30.	What	t is the sun	n of the	major and n	ninor axe	es of the el	lipse wh	ose eccent	ricity is 4/5 and
	lengt	h of latus re	ectum is 1	14.4 unit?					
	a.	32	b.	48 unit	с.	64 unit	d.	None of	the above
			_	\geq	4	X	_		

							By: I	Er. Vina Mo.: 93	ay Bhabhra 3145-33083
31.	The	cumulative fre	equency	y of the larg	est obser	ved value m	ust alwa	ys be:	
	a.	Less than the	ne total	number of	observati	ons			
	b.	Greater that	n the to	tal number	of observ	vations			
	c.	Equal to tot	al num	ber of obser	vations				
	d.	Equal to mi	d point	of the last of	class inter	rval			
32.	It ha	s been found	that if A	A and B pla	iy a game	e 12 times, A	wins 6	times, B	wins 4 times and
	they	draw twice.	A and	B take part	t in a ser	ies of 3 gan	nes. The	e probabili	ty that they win
	alter	nately, is:							
	a.	5/12	b.	5/36	c.	19/27	d.	5/27	
33.	Out	of 7 consonar	its and	4 vowels, v	vords are	to be forme	d by inv	volving 3 c	consonants and 2
	VOW	els. The numb	er of su	ich words fo	ormed is:				
	a.	25200	b.	22500	c.	10080	d.	5040	
34.	Let	X denote the	numbe	er of score	s which	exceed 4 in	18 tos	ses of a s	symmetrical die.
	Cons	sider the follo	wing st	atements:					
	1.	The arithme	etic mea	an of X is 6	•				
	2.	The standar	d devia	ation of X is	2.				
	Whie	ch of the abov	e stater	ments is/are	correct?				
	a.	1 only			b.	2 only			
	c.	Both 1 and	2		d.	Neither 1	nor 2		
35.	How	many differe	nt word	ds can be fo	rmed by	taking four l	etters ou	ut of the le	etters of the word
	'AG	AIN' if each w	word ha	as to start wi	ith A?				
	a.	6	b.	12	с.	24	d.	None of	f the above
36.	The	sum of the ser	ies forr	med by the s	sequence	3, $\sqrt{3}$, 1	. upto ir	nfinity is	
	a.	$\frac{3\sqrt{3}(\sqrt{3}+1)}{2}$	<u>l)</u>		b.	$\frac{3\sqrt{3}(\sqrt{3}-2)}{2}$	-1)		
	c.	$\frac{3(\sqrt{3}+1)}{2}$			d.	$\frac{3(\sqrt{3}-1)}{2}$			
37.	If $ z $	$+\overline{z} = z - \overline{z} $, then th	he locus of z	z is:				
	a.	A pair of st	raight l	ines	b.	A line			
	c.	A set of fou	ır straig	tht lines	d.	A circle			
38.	The	number 251 in	ı decim	al system is	s expresse	ed in binary s	system b	y:	
				\sum	5	77			

							By: Er M	. Vinay Bhabhra o.: 93145-33083
	a.	11110111	b.	11111011	c.	11111101	d.	11111110
39.	What	is the argume	nt of th	e complex nu	mber <u>(</u>	$\frac{(1+i)(2+i)}{3-i}$	where $i =$	$\sqrt{-1}$?
	a.	0	b.	$\frac{\pi}{4}$	c.	$-\frac{\pi}{4}$	d.	$\frac{\pi}{2}$
40.	Consi	der the follow	ving sta	tements in res	pect of	the matrix	$\mathbf{A} = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}$	$ \begin{bmatrix} 1 & 2 \\ 0 & -3 \\ 3 & 0 \end{bmatrix} : $
	1.	The matrix A	l is ske	w-symmetric.				
	2.	The matrix A	A is syn	nmetric.				
	3.	The matrix A	A is inve	ertible.				
	Whicl	n of the above	statem	ents is/are con	rrect?			
	a.	1 only	b.	3 only	c.	1 and 3	d. 2	2 and 3
41.	Consi	der two mat	rices A	$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} $ an	d $B = \begin{bmatrix} \\ \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & -4 \\ 2 & 1 & -4 \end{bmatrix}$.Which o	ne of the following is
	correc	ct?						
	a.	B is the right	t invers	e of A	b.	<i>B</i> is the lef	t inverse o	f A
	c.	<i>B</i> is the both	sided i	nverse of A	d.	None of the	e above	
42.	One o	f the roots of	$\begin{vmatrix} x+a \\ a \\ a \end{vmatrix}$	$ \begin{array}{ccc} b & c \\ x+b & c \\ b & x+c \end{array} $	=0 is:			
	a.	abc	b.	a+b+c	c.	-(a+b+c)) d.	–abc
43.	If A i	s any matrix,	then th	ne product AA	A is def	fined only w	hen A is	a matrix of order $m \times n$
	where	:						
	a.	m > n	b.	m < n	c.	m = n	d.	$m \leq n$
44.	The d	eterminant of	an odd	order skew s	ymmeti	ric matrix is	always:	
	a.	Zero			b.	One		
	c.	Negative			d.	Depends of	n the matri	ix
45.	If any	two adjacent	rows c	or columns of	a deter	minant are i	nterchang	ed in position, the value
	of the	determinant:						
	a.	Becomes zer	0		b.	Remains th	e same	
					6	\square		

							By: I	Er. Vinay Bhabhra
	с.	Changes its	sign		d.	Is doubled		MO.: 93145-33083
46.	Cons	ider the follo	wing sta	atements:				
	1.	The function	on $f(x)$	$=\sin x$ decre	eases on	the interval (), π/2).	
	2.	The function	on $f(x)$	$=\cos x$ increases	eases on	the interval ((), π/2).	
	Whic	h of the abov	e staten	nents is/are c	correct?			
	a.	1 only			b.	2 only		
	c.	Both 1 and	2		d.	Neither 1 n	or 2	
47.	What	t is the number	er of art	oitrary consta	ants in t	he particular s	olution	of differential equation of
	third	order?						
	a.	0	b.	1	c.	2	d.	3
48.	What	t is the equat	tion of	a curve pass	sing thr	ough (0, 1) ai	nd who	ose differential equation is
	giver	by $dy = y$ ta	n x dx?					
	a.	$y = \cos x$	b.	$y = \sin x$	c.	$y = \sec x$	d.	$y = \operatorname{cosec} x$
49.	Cons	ider the follo	wing sta	atements in r	espect o	of the different	ial equ	ation $\frac{d^2 y}{dx^2} + \cos\left(\frac{dy}{dx}\right) = 0$:
	1.	The degree	of the c	lifferential e	quation	is not defined		
	2.	The order of	of the di	fferential equ	uation is	s 2.		
	Whic	h of the abov	e staten	nents is/are c	correct?			
	a.	1 only			b.	2 only		
	c.	Both 1 and	2		d.	Neither 1 n	or 2	
50.	What	t is the equation	on of pa	arabola whos	e vertex	x is at (0, 0) an	d focus	s is at (0, -2)?
	a.	$y^2 + 8x = 0$			b.	$y^2 - 8x = 0$		
	c.	$x^2 + 8y = 0$			d.	$x^2 - 8y = 0$		
For th	ne next	four (04) iter	ms that	follow:				
Numl	ber X i	s randomly s	selected	from the set	t of odd	numbers and	Y is r	andomly selected from the
set of	even 1	numbers of th	e set {1	, 2, 3, 4, 5, 6	i, 7}. Le	et $Z = (X + Y)$		
51.	What	is $P(Z=5)$	equal to	o?				
	a.	1/2	b.	1/3	c.	1/4	d.	1/6
52.	What	t is $P(Z=10)$	equal (to?				
	a.	0	b.	1/2	c.	1/3	d.	1/5
					7	77		

									By:	Er. V Mo.:	inay 9314	Bhabhra 5-3308
53	What	is $P(Z > 1)$	l) equal	to?								
	a.	0	b.	1/4	(с.	1/6	5	d.	1/12		
54.	What	is $P(Z ext{ is the } f(Z ext{ is } f(Z ext{ is$	e produc	et of two	prime n	umber	rs) e	equal to	o?			
	a.	0	b.	1/2	(с.	1/4	Ļ	d.	Non	e of the	above
For th	e next	three (03) in	tems that	t follow:								
The n	umber	of telephor	ne calls	received	l in 245	succe	ssiv	ve one	minute	interva	ls at an	exchange i
given	below	in the follo	wing fre	equency of	distributi	on.						
	Numł	per of calls	0	1	2	3		4	5	6	7	
	Frequ	lency	14	21	25	43		51	40	39	12	
												l
55.	What	is the mean	of the o	listributi	on?							
	a.	3.76	b.	3.84	(с.	3.9	6	d.	4.05		
56.	What	is the medi	an of the	e distribu	tion?							
	a.	3.5	b.	4	(с.	4.5	i	d.	5		
57.	What	is the mode	e of the o	distributi	on?							
	a.	3	b.	4	(с.	5		d.	6		
For th	e next	three (03) in	tems that	t follow:								
The m	nean ar	nd standard	deviatio	n of 100	items ar	e 50, ś	5 an	d that	of 150 i	tems are	e 40, 6 r	espectively
58.	What	is the comb	oined me	ean of all	250 iter	ns?						
	a.	43	b.	44	(с.	45		d.	46		
59.	What	is the comb	oined sta	indard de	viation of	of all 2	250	items?)			
	a.	7.1	b.	7.3	(с.	7.5	i	d.	7.7		
60.	What	is the varia	nce of a	ll the 250) items?							
	a.	50.6	b.	53.3	(с.	55.	.6	d.	59.3		
For th	e next	three (03) is	tems that	t follow:								
In a su	urvey o	of 25 studen	ts, it wa	s found t	hat 15 h	ad tak	en l	Mather	matics, 1	12 had t	aken Ph	ysics and 1
had ta	aken (Chemistry, 3	5 had t	aken Ma	thematio	es and	1 C	hemist	ry, 9 h	ad take	n Math	ematics an
Physic	cs, 4 ha	ad taken Phy	ysics and	d Chemis	stry and	3 had	take	en all t	he three	subject	S.	
61.	The n	umber of st	udents v	who had	taken on	ly Phy	ysic	s is:				
	a.	2	b.	3	(с.	5		d.	6		
62.	The n	umber of st	udents v	who had	taken on	ly two	o sul	bjects	is:			
						Q] <					

							By:	Er. Vinay	y Bhabhra
	a.	7	b.	8	с.	9	d.	101: 931 10	45-33063
63.	Cons	ider the follo	owing st	tatements:					
	1.	The numb	er of st	udents who	o had tak	en only one	subject	t is equal to	the number of
	stude	ents who had	taken o	only two sul	bjects.	·	0		
	2.	The numb	er of stu	udents who	had take	n at least tw	o subjec	ets is four tim	nes the number
	of stu	udents who h	ad take	n all the thr	ee subjec	ts.			
	Whic	ch of the abo	ve state	ments is/are	e correct?				
	a.	1 only			b.	2 only			
	c.	Both 1 and	12		d.	Neither 1	nor 2		
For th	ne next	t three (03) it	tems that	t follow:					
In the	e expar	usion of $\left(x^3\right)$	$\left(-\frac{1}{x^2}\right)^n$	where <i>n</i> is a	a positive	integer, the	sum of t	the coefficien	its of x^5 and x^{10}
is 0.									
64.	Wha	t is <i>n</i> equal to	o?						
	a.	5	b.	10	с.	15	d.	None of t	he above
65.	Wha	t is the value	of the i	ndependen	t term?				
	a.	5005	b.	7200	с.	-5005	d.	-7200	
66.	Wha	t is the sum o	of the co	pefficients of	of the two	middle tern	ns?		
	a.	0	b.	1	с.	-1	d.	None of t	he above
For th	ne next	t three (03) it	tems tha	t follow:					
Giver	1 that	C(n, r): C(n)	, r+1) =	=1:2 and C	L(n, r+1)	: C(n, r+2)	=2:3.		
67.	Wha	t is <i>n</i> equal to	o?						
	a.	11	b.	12	с.	13	d.	14	
68.	Wha	t is <i>r</i> equal to	o?						
	a.	2	b.	3	с.	4	d.	5	
69.	Wha	t is $P(n, r)$:	C(n, r)	equal to?					
	a.	6	b.	24	с.	120	d.	720	
70.	The	complete sol	ution of	$3\tan^2 x =$	1 is given	by:			
	a.	$x = n\pi \pm \frac{\pi}{3}$	$\frac{\tau}{3}$		b.	$x = n\pi +$	$\frac{\pi}{3}$ only		
					9	73			

By: Er. Vinay Bhabhra Mo.: 93145-33083

c.
$$x = n\pi \pm \frac{\pi}{6}$$
 d. $x = n\pi + \frac{\pi}{6}$ only

71. What is the value of $\cos 36^{\circ}$?

a.
$$\frac{\sqrt{5}-1}{4}$$
 b. $\frac{\sqrt{5}+1}{4}$ c. $\frac{\sqrt{10+2\sqrt{5}}}{4}$ d. $\frac{\sqrt{10-2\sqrt{5}}}{4}$

- 72. Consider the following statements:
 - 1. Value of $\sin \theta$ oscillates between -1 and 1.
 - 2. Value of $\cos \theta$ oscillates between 0 and 1.
 - Which of the above statements is/are correct?
 - a. 1 only b. 2 only
 - c. Both 1 and 2 d. Neither 1 nor 2

73. If x and y are positive and xy > 1, then what is $\tan^{-1} x + \tan^{-1} y$ equal to?

a.
$$\tan^{-1}\left(\frac{x+y}{1-xy}\right)$$

b. $\pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right)$
c. $\pi - \tan^{-1}\left(\frac{x+y}{1-xy}\right)$
d. $\tan^{-1}\left(\frac{x-y}{1+xy}\right)$

- 74. Consider the following statements:
 - 1. $n\left(\sin^2 67\frac{1}{2}\circ -\sin^2 22\frac{1}{2}\circ\right) > 1$ for all positive integers $n \ge 2$.
 - 2. If *x* is any positive real number, then nx > 1 for all positive integers $n \ge 2$. Which of the above statements is/are correct?
 - a. 1 only b. 2 only
 - c. Both 1 and 2 d. Neither 1 nor 2
- 75. Consider the following statements:

1. If 3θ is an acute angle such that $\sin 3\theta = \cos 2\theta$, then the measurement of θ in radians equals to $\frac{\pi}{10}$.

2. One radian is the angle subtended at the centre of a circle by an arc of the same circle whose length is equal to the diameter of that circle.

10

Which of the above statements is/are correct?

a. 1 only b. 2 only

							By: E	Er. Vinay Bhabhra Mo.: 93145-33083
	c.	Both 1 and 2	2		d.	Neither 1	nor 2	
76.	If <i>f</i> (9) = 9 and f'	(9) = 4	then what is \lim_{x}	$\lim_{x\to 9}\frac{\sqrt{f(x)}}{\sqrt{x}}$	$\frac{\overline{x}}{\overline{x-3}}$ equa	al to?	
	a.	36	b.	9	c.	4	d.	None of the above
77.	What	x is $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x dx$	x equa	al to?				
	a.	0	b.	2	c.	-2	d.	π
78.	What	is the general	solutio	on of the differ	rential	equation x a	dy - y dz	$x = y^2 ?$
	a.	x = cy			b.	$y^2 = cx$		
	c.	x + xy - cy =	= 0		d.	None of th	e above	
	where	e <i>c</i> is an arbitr	ary cor	nstant				
79.	Cons	ider the follow	ving sta	atements:				
	1.	The function	f(x)	$=\sqrt[3]{x}$ is contin	nuous a	t all <i>x</i> excep	t at $x =$	0.
	2.	The function	f(x)	= [x] is continu	uous at	x = 2.99 w	here [.]	is the bracket function.
	Whic	h of the above	e staten	nents is/are con	rrect?			
	a.	1 only			b.	2 only		
	c.	Both 1 and 2	2		d.	Neither 1	nor 2	
80.	Cons	ider the follow	ving sta	atements:				
	1.	The function	f(x)	= x is not di	ifferent	iable at $x =$	1.	
	2.	The function	f(x)	$=e^x$ is differe	ntiable	at $x = 0$.		
	Whic	h of the above	e staten	nents is/are con	rrect?			
	a.	1 only			b.	2 only		
	c.	Both 1 and 2	2		d.	Neither 1	nor 2	
81.	If <i>z</i> =	= f o f(x) wh	here $f($	$f(x) = x^2$, then t	that is $\frac{2}{3}$	$\frac{dz}{dx}$ equal to:	?	
	a.	x^3	b.	$2x^3$	c.	$4x^3$	d.	$4x^2$
For th	ne next	two (02) item	is that f	follow:				
Consi	ider the	e function $f(x)$	$x) = \frac{x^2}{x^2}$	$\frac{-x+1}{+x+1}$				
					11	1		

							By:	Er. Vinay E Mo.: 9314	Bhabhra 5-33083
82.	What	is the maxi	mum val	ue of the f	unction?				
	a.	1/2	b.	1/3	c.	2	d.	3	
83.	What	is the mini	mum val	ue of the fu	inction?				
	a.	1/2	b	1/3	c.	2	d.	3	
For th	ne next	three (03) i	tems that	t follow:					
Let f	f(x) be	a function of	defined in	$1 \le x < \infty$	by				
f(x)	$=\begin{cases} 2-\\ 3x-\end{cases}$	x f $-x^2$ f	$\begin{array}{ll} \text{for} & 1 \leq \\ \text{for} & x > \end{array}$	$x \le 2$ > 2					
84.	Consi	ider the foll	owing st	atements:					
	1.	The funct	ion is cor	ntinuous at	every poin	nt in the	interval [1]	, ∞).	
	2.	The funct	ion is dif	ferentiable	at $x = 1.5$.				
	Whic	h of the abo	ove stater	nents is/are	e correct?				
	a.	1 only			b.	2 only			
	c.	Both 1 an	d 2		d.	Neithe	r 1 nor 2		
85.	What	is the diffe	rentiable	coefficien	t of $f(x)$ a	x = 3?			
	a.	1	b.	2	c.	-1	d.	-3	
86.	Consi	ider the foll	owing st	atements:					
	1.	f'(2+0)	does not	exist.					
	2.	f'(2-0)	does not	exist.					
	Whic	h of the abo	ove stater	nents is/are	e correct?				
	a.	1 only			b.	2 only			
	c.	Both 1 an	d 2		d.	Neithe	r 1 nor 2		
87.	What	is $\int_{0}^{\frac{\pi}{2}} \ln(\tan)$	x) dx equ	ual to?					
	a.	In 2	b.	– In 2	c.	0	d.	None of the a	above
For th	ne next	three (03) i	tems that	t follow:					
The	gener	al solutio	n of	the diffe	rential e	quation	$(x^2 + x +$	$-1)dy + (y^2 + y + 1)$	dx = 0 is
(x+y)	y + 1) =	A(1+Bx+a)	Cy + Dxy) where <i>B</i> ,	C and D a	re consta	ant and A is	s parameter.	
88.	What	is <i>B</i> equal	to?						
	a.	-1	b.	1	c.	2	d.	None of the a	above
				\geq	12	Z			

							By: E	Er. Vinay Bhabhra Mo.: 93145-33083
89.	Wha	t is C equal to)?					
	a.	1	b.	-1	c.	2	d.	None of the above
90.	Wha	t is D equal to	o?					
	a.	-1	b.	1	c.	-2	d.	None of the above
91.	Wha	t is $\lim_{x \to 0} \frac{(1+x)}{x}$	$\frac{p^{n}-1}{2}$ e	qual to?				
	a.	0	b.	1	c.	n	d.	n-1
92.	Wha	t is $\lim_{x \to 0} \frac{x}{\sqrt{1-x}}$	$\frac{x}{\cos x}$ ec	qual to?				
	a.	$\sqrt{2}$	b.	$-\sqrt{2}$	c.	$\frac{1}{\sqrt{2}}$	d.	Limit does not exist
93.	Wha	t is the deriva	tive of	$\sqrt{\frac{1+\cos x}{1-\cos x}}?$				
	a.	$\frac{1}{2}\sec^2\frac{x}{2}$			b.	$-\frac{1}{2}$ cose	$ec^2 \frac{x}{2}$	
	c.	$-\operatorname{cosec}^2 \frac{x}{2}$			d.	None of	these	
94.	Wha	t is $\int_{0}^{1} \frac{e^{\tan^{-1}x} dx}{1+x^2}$	equal	to?				
	a.	$e^{\frac{\pi}{4}} - 1$	b.	$e^{\frac{\pi}{4}} + 1$	c.	e-1	d.	е
95.	Wha	t is the slope	of the t	angent to the	curve y	$y = \sin^{-1}(\sin^{-1})$	$n^2 x$) at $x =$	= 0?
	a.	0	b.	1	c.	2	d.	None of the above
96.	The s	solution of $\frac{dy}{dx}$	$\frac{y}{x} = x $	is:				
	a.	$y = \frac{x \mid x \mid}{2} +$	Ċ		b.	$y = \frac{ x }{2}$	+ <i>c</i>	
	c.	$y = \frac{x^2}{2} + c$			d.	$y = \frac{x^3}{2} +$	⊦c	
	wher	e c is an arbit	trary co	onstant				
97.	Wha	t is the solution	on of $\frac{a}{a}$	$\frac{dy}{dx} + 2y = 1$ sat	isfying	y(0) = 0?		
				>	13	$\neg <$		

By: Er. Vinay Bhabhra Mo.: 93145-33083 b. $y = \frac{1 + e^{-2x}}{2}$ $y = \frac{1 - e^{-2x}}{2}$ a. d. $y = \frac{1+e^x}{2}$ $v = 1 + e^{x}$ c. For the next two (02) items that follow: Consider the curve $y = e^{2x}$. What is the slope of the tangent to the curve at (0, 1)? 98. 0 b. C. a. 1 2 d. 4 Where does the tangent to the curve at (0, 1) meet the x-axis? 99. a. (1, 0)b. (2, 0)c. (-1/2, 0)d. (1/2, 0)For the next two (02) items that follow: Consider an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. What is the area of the greatest rectangle that can be inscribed in the ellipse? 100. \sqrt{ab} ab b. 2abc. ab/2d. a. 101. What is the area included between the ellipse and the greatest rectangle inscribed in the ellipse? $ab(\pi-1)$ $2ab(\pi-1)$ a. b. $ab(\pi-2)$ None of the above d. c. For the next two (02) items that follow: Consider the integrals $I_{1} = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}} \text{ and } I_{2} = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x} \, dx}{\sqrt{\sin x} + \sqrt{\cos x}}.$ 102. What is $I_1 - I_2$ equal to? 0 a. b. $2I_1$ b. d. None of the above π 103. What is I_1 equal to? $\pi/24$ b. $\pi/18$ $\pi/12$ c. d. $\pi/6$ a. For the next two (02) items that follow: Consider the function $f(x) = \frac{1 - \sin x}{(\pi - 2x)^2}$ where $x \neq \frac{\pi}{2}$ and $f\left(\frac{\pi}{2}\right) = \lambda$ 14

What is $\lim_{x \to \infty} f(x)$ equal to? 104. $x \rightarrow \frac{\pi}{2}$ 1/21/81 b. c. 1/4d. a. What is the value of λ if the function is continuous at $x = \frac{\pi}{2}$? 105. 1/8b. 1/41/2d. 1 a. c. Let X be the set of all citizens of India. Elements x, y in X are said to be related if the 106. difference of their age is 5 years. Which one of the following is correct? The relation is an equivalence relation on X. a. b. The relation is symmetric but neither reflexive nor transitive. The relation is reflexive but neither symmetric nor transitive. c. None of the above d. 107. Consider the following relations from A to B where $A = \{u, v, w, x, y, z\}$ and $B = \{p, q, r, s\}$. 1. $\{(u, p), (v, p), (w, p), (x, q), (y, q), (z, q)\}$ 2. $\{(u, p), (v, q), (w, r), (z, s)\}$ 3. $\{(u,s),(v,r),(w,q),(u,p),(v,q),(z,q)\}$ $\{(u,q),(v,p),(w,s),(x,r),(y,q),(z,s)\}$ 4. Which of the above relations are not functions? 1 and 2b. 1 and 4c. 2 and 3 d. 3 and 4 a. If α and β are the roots of the equation $ax^2 + bx + c = 0$, where $a \neq 0$, then $(a\alpha + b)(a\beta + b)$ 108. is equal to: ab b. bcd. abc a. c. ca 109. Let S denote set of all integers. Define a relation R on S as 'aRb if $ab \ge 0$ where $a, b \in S$ '. Then *R* is: Reflexive but neither symmetric nor transitive relation a. b. Reflexive, symmetric but not transitive relation c. An equivalence relation d. Symmetric but neither reflexive nor transitive relation The roots of the equation $2a^2x^2 - 2abx + b^2 = 0$ when a < 0 and b > 0 are: 110. Sometimes complex Always irrational b. a. Always complex d. Always real c. 15

						By	: Er. Vinay Bhabhra Mo.: 93145-33083
111.	What	t is the sum of	the tw	o numbers (11	110)2	and (1010) ₂ ?	
	a.	(101000) ₂			b.	(110000) ₂	
	c.	(100100) ₂			d.	(101100) ₂	
112.	Let <i>I</i>	V denote the s	set of a	all non-negati	ve inte	egers and Z denote	e the set of all integers. The
	funct	ion $f: Z \to N$	V giver	h by $f(x) = x $	is:		
	a.	One-one but	t not or	nto	b.	Onto but not on	e-one
	c.	Both one-or	ne and o	onto	d.	Neither one-one	e nor onto
113.	If P a	and Q are two	comple	ex numbers, th	en the	modulus of the qu	otient of P and Q is:
	a.	Greater than	the qu	otient of their	modu	li	
	b.	Less than qu	ıotient	of their modu	li		
	c.	Less than or	equal	to the quotien	t of the	eir moduli	
	d.	Equal to the	quotie	ent of their mo	duli		
114.	Let z	x = x + iy when	re <i>x</i> , <i>y</i>	are real variat	oles an	d $i = \sqrt{-1}$. If $ 2z $	-1 = z-2 , then the point z
	descr	ibes:					
	a.	A circle			b.	An ellipse	
	c.	A hyperbola	ı		d.	A parabola	
115.	The s	sum of an infi	nite GI	P is x and the	comme	on ratio r is such th	hat $ r < 1$. If the first term of
	the G	P is 2, then w	hich or	ne of the follo	wing is	correct?	
	a.	-1 < x < 1			b.	$-\infty < x < 1$	
	c.	$1 < x < \infty$			d.	None of the abo	ve
116.	A bo	x contains 3 v	white a	nd 2 black bal	ls. Two	o balls are drawn a	at random one after the other.
	If the	balls are not	replace	ed, what is the	probal	oility that both the	balls are black?
	a.	2/5	b.	1/5	c.	1/10 d.	None of the above
117.	For t	wo variables :	x and y	, the two regr	ression	coefficients are b	$y_{xx} = -3/2$ and $b_{xy} = -1/6$. The
	corre	lation coeffici	ent bet	ween x and y	is:		
	a.	-1/4	b.	1⁄4	c.	-1/2 d.	1/2
118.	The v	variance of nu	mbers	x_1, x_2, x_3, \ldots	x_n is V_n	Consider the follo	owing statements:
	1.	If every x_i is	increa	used by 2, the	varianc	e of the new set of	f numbers is V.
	2.	If the number	ers x_i is	s squared, the	varianc	e of the new set is	V^2 .
	Whic	th of the follow	wing st	atements is/ar	e corre	ct?	
	a.	1 only			b.	2 only	
				\geq	16		

										By: E	ir. V No.:	inay l 9314	Bhabhra 5-33083
	c.	Both	1 and	2			d.	Neith	er 1 n	or 2		0014	00000
119.	What is the mean of the squares of the first 20 natural numbers?												
	a.	151.5		b.	143.	5	c.	65		d.	72		
120.	p, q,	r, s, t a	re fiv	e numbe	ers suc	h that th	he ave	erage of	p, q a	and r is f	5 and	that of s	and <i>t</i> is 10.
	Wha	t is the a	avera	ge of all	the fiv	ve numb	ers?						
	a.	7.75		b.	7.5		c.	7		d.	5		
Answers													
1.	a.	2.	d.	3.	c.	4.	c.	5.	c.	6.	a.	7.	b.
8.	c.	9.	b.	10.	a.	11.	c.	12.	a.	13.	b.	14.	d.
15.	Х	16.	c.	17.	c.	18.	d.	19.	c.	20.	b.	21.	b.
22.	a.	23.	d.	24.	b.	25.	b.	26.	c.	27.	c.	28.	а.
29.	c.	30.	c.	31.	c.	32.	b.	33.	a.	34.	c.	35.	с.
36.	a.	37.	c.	38.	b.	39.	d.	40.	a.	41.	d.	42.	с.
43.	c.	44.	a.	45.	c.	46.	d.	47.	a.	48.	c.	49.	с.
50.	c.	51.	d.	52.	a.	53.	d.	54.	c.	55.	d.	56.	b.
57.	b.	58.	b.	59.	c.	60.	c.	61.	a.	62.	c.	63.	b.
64.	c.	65.	c.	66.	a.	67.	d.	68.	c.	69.	b.	70.	с.
71.	b.	72.	a.	73.	c.	74.	a.	75.	a.	76.	c.	77.	b.
78.	d.	79.	b.	80.	b.	81.	c.	82.	d.	83.	b.	84.	b.
85.	d.	86.	d.	87.	c.	88.	a.	89.	b.	90.	c.	91.	с.
92.	a.	93.	a.	94.	a.	95.	a.	96.	a.	97.	a.	98.	с.
99.	c.	100.	b.	101.	c.	102.	a.	103.	c.	104.	d.	105.	a.
106.	b.	107.	c.	108.	Х	109.	c.	110.	c.	111.	a.	112.	b.
113.	d.	114.	a.	115.	c.	116.	c.	117.	c.	118.	a.	119.	b.
120.	c.												