NDA Paper Sept 2016

Let S be a set of all distinct numbers of the form $\frac{p}{2}$, where $p, q \in \{1, 2, 3, 4, 5, 6\}$. What is the 1.

cardinality of the set S?

21 a.

h. 23

32 c.

36

If c > 0 and 4a + c < 2b, then $ax^2 - bx + c = 0$ has a root in which one of the following intervals? 2.

(2, 3)

c. (3, 4) d. (-2, 0)

If $A = \{x \in \mathbb{R} : x^2 + 6x - 7 < 0\}$ and $B = \{x \in \mathbb{R} : x^2 + 9x + 14 > 0\}$, then which of the following is/are 3. correct?

 $A \cap B = \{x \in \mathbf{R} : -2 < x < 1\}$ 1.

 $A \setminus B = \{x \in \mathbf{R} : -7 < x < -2\}$

Select the correct answer using the code given below:

1 only

b. 2 only

Both 1 and 2 d. c.

Neither 1 nor 2

If A is a square matrix of order 3 and det A = 5, then what is det $[(2A)^{-1}]$ equal to? 4.

a. 1/10

2/5 b.

8/5

d. 1/40

What is $\omega^{100} + \omega^{200} + \omega^{300}$ equal to, where ω is the cube root of unity? 5.

1 a.

b. 3ω $3\omega^2$

d. 0

If $\operatorname{Re}\left(\frac{z-1}{z+1}\right) = 0$, were z = x + iy is a complex number, then which one of the following is 6.

correct?

z = 1 + i

b.__

c. z = 1 - i d. |z| = 1

equal to" 7.

> $\begin{bmatrix} ax + hy + gz & h+b+f & g+f+c \end{bmatrix}$ a.

b.

ax + hy + gzhx + by + fzc. gx + fy + cz

 $\begin{bmatrix} ax + hy + gz & hx + by + fz & gx + fy + cz \end{bmatrix}$ d.

Out of 15 points in a plane, n points are in the same straight line. 445 triangles can be formed 8. by joining these points. What is the value of n?

9.	If $z =$	$\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^{107} +$			hat is t	he imaginary	part of	z equal to?
	a.	0	b.	$\frac{1}{2}$	c.	$\frac{\sqrt{3}}{2}$	d.	1
10.	If both	the roots of	the equa	ation				
	$x^{2}-2$	$kx + k^2 - 4 = 0$	lie bet	tween -3 and	5, then	which one of	the foll	lowing is correct?
	a.	-2 < k < 2			b.	-5 < k < 3		
	c.	-3 < k < 5			d.	-1 < k < 3		
11.	What	is the number	of disti	nct solutions	of the	equation $z^2 + $	z = 0	(where z is a complex
numbe	er)?							
	a.	One	b.	Two	c.	Three	d.	Five
12.	How r	nany geometr	ric prog	ressions is/are	e possib	le containing	27, 8 a	nd 12 as three of its/their
terms?	?							
	a.	One	b.	Two		Four	d.	Infinitely many
13.					to $B =$	$\{1, 3, 5\}$ such	that R	= (a, b): $a < b$, where
$a \in A$	and b	$\in B$). What is	RoR^{-1}	equal to?				
	a.	$\{(1,3),(1,5)\}$), (2, 3),	(2, 5), (3, 5),	, (4, 5)			
	b.			(5, 2), (5, 3),	, (5, 4)			
	c.	$\{(3,3),(3,5)\}$						
	d.	$\{(3,3),(3,4)\}$						
14.						_	igits 0,	1, 2, 3 and 4 without
repetit		digits. What i	s the nu	mber of ways				
	a.	96			b.	48		
c.	32		=	d.		mber can be f	ormed	
15.	What	is ${}^{47}C_4 + {}^{51}C_3$	$+\sum_{j=2}^{3}$ 52-3	C_3 equal to?				
	a.	$^{52}C_4$	b.	$^{51}C_{5}$	c.	$^{53}C_{4}$	d.	$^{52}C_{5}$
Consi	der the	e following fo	r the n	ext three (03)) items	that follow:		
	Let a,	x, y, z, b be in	a AP, w	here $x + y + z$	z = 15.1	Let a, p, q, r, b	b be in l	HP, where
$p^{-1} + c$	$q^{-1} + r^{-1}$	-1 = 5/3.						
16.	What	is the value of	f ab?					
	a.	10	b.	9	c.	8	d.	6
17.	What	is the value of	f xyz?					

BALAJI TOWER-IV LALGARH PLACE, SECTOR-2, VIDHYADHAR NAGAR, JAIPUR, PH.: 93145-33083

3 b. 4 c. 5 d. 6

a.

	a.	120	b.	105	c.	90	d.	Cannot be determined
18.	Wha	t is the value	of pqr?					
	a.	35/243	b.	81/35	c.	243/35	d.	Cannot be determined
Cons	sider tl	ne following f	for the i	next two (0	2) items	that follow:		
The s	sixth te	rm of an AP i	s 2 and	its common	differen	ce is greater	than 1.	
19.	Wha	t is the comm	on diffe	rence of the	AP so th	nat the produ	ct of the	first, fourth and fifth
terms	s is gre	atest?						
	a.	8/5	b.	9/5	c.	2	d.	11/5
20.	Wha	t is the first te	rm of th	ne AP so tha	it the pro	duct of the fi	rst, four	th and fifth terms is
great	est?							
	a.	-4	b.	-6	c.	-8	d.	-10
Cons	sider tl	ne following f	or the i	next two (0	2) items	that follow:		
			3	x+1 $2x$	3x		, /	
	Let a	$ax^3 + bx^2 + cx$	+d= 2	x+3 $x+1$	$1 \qquad x$, then		
			2	2-x $3x+$	4 5x-1			
21.	Wha	t is the value of	of c ?					
	a.	-1	b.	34	c.	35	d.	50
22.	Wha	t is the value of	of $a+b$	+c+d?				
	a.	62	b.	63	c.	65	d.	68
Cons	sider tl	ne following f	for the i	next two (0	2) items	that follow:		
The i	nterior	angles of a p	olygon	of n sides a	re in AP.	The smallest	angle is	s 120° and the common
diffe	rence is	s 5°.						
23.	How	many possibl	le value	s can n have	e?			
	a.	One	b.	Two	c.	Three	d.	Infinitely many
24.	Wha	t is the largest	interio	r angle of th	ne polygo	n?		
	a.	160° only			b.	195° only		
c.	Eithe	er 160° or 195	0	d.	Neith	ner 160° nor 1	195°	
25.	If m	$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $ and	$n = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, then	what is t	he value of tl	he deter	minant of
mco	$s\theta-ns$	$\sin \theta$?						
	a.	-1	b.	0	c.	1	d.	2

If $f(x) = \begin{bmatrix} \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct?

 $\begin{bmatrix} \cos x & -\sin x & 0 \end{bmatrix}$

 $f(\theta) \times f(\phi) = f(\theta + \phi)$.

26.

2. The value of the determinants of the matrix $f(\theta) \times f(\phi)$ is 1.

3. The determinant of f(x) is an even function.

Select the correct answer using the code given below:

a. 1 and 2 only

b. 2 and 3 only

c. 1 and 3 only

d. 1, 2 and 3

27. Which of the following are correct in respect of the system of equations x + y + z = 8,

$$x-y+2z = 6$$
 and $3x-y+5z = k$?

1. They have no solution, if k = 15.

2. They have infinitely many solutions, if k = 20.

3. They have unique solution, if k = 25.

Select the correct answer using the code given below:

a. 1 and 2 only

b. 2 and 3 only

c. 1 and 3 only

d. 1, 2 and 3

28. If $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$, then which of the following is/are correct?

1. $AB(A^{-1}B^{-1})$ is a unit matrix.

2. $(AB)^{-1} = A^{-1}B^{-1}$

Select the correct answer using the code given below:

a. 1 only

b. 2 only

c. Both 1 and 2 d.

Neither 1 nor 2

29. If $x^{\ln\left(\frac{y}{z}\right)} \Box y^{\ln(xz)^2} \Box z^{\ln\left(\frac{x}{y}\right)} = y^{4\ln y}$ for any x > 1, y > 1 and z > 1, then which one of the following is correct?

a. ln y is the GM of ln x, ln x, ln x and ln z

b. ln y is the AM of ln x, ln x, ln x and ln z

c. ln y is the HM of ln x, ln x, ln x and ln z

d. ln y is the AM of ln x, ln x, ln z and ln z

30 If the number 235 in decimal system is converted into binary system, then what is the resulting number?

a. $(11110011)_2$

b. (11101011)₂

c. $(11110101)_2$

d. (11011011)₂

Consider the following for the next two (02) items that follow:

Let α and β be the roots of the equation

$$x^{2} - (1 - 2a^{2})x + (1 - 2a^{2}) = 0.$$

31. Under what condition does the above equation have real roots?

	a.	$a^2 < \frac{1}{2}$	b.	$a^2 > \frac{1}{2}$	c.	$a^2 \le \frac{1}{2}$	d.	$a^2 \ge \frac{1}{2}$
32.	Under	what condition	on is $\frac{1}{\alpha}$	$\frac{1}{2} + \frac{1}{\beta^2} < 1$?				
	a.	$a^2 < \frac{1}{2}$	b.	$a^2 > \frac{1}{2}$	c.	$a^2 > 1$	d.	$a^2 \in \left(\frac{1}{3}, \frac{1}{2}\right)$ only
33.	What i	$4s \sqrt{\frac{1+\omega^2}{1+\omega}} eq$	ual to,	where ω is the	e cube 1	root of unity?		
	a.	1	b.	ω	c.	ω^2	d.	$i\omega$, where $i = \sqrt{-1}$
34.	In an e	examination,	70% stu	idents passed	in Phys	sics, 80% stud	ents pa	ssed in Chemistry, 75%
studen	its pass	ed in Mathem	atics ar	nd 85% studer	its pass	ed in Biology	, and x^{\prime}	% students failed in all
the for	ur subje	ects. What is t	he min	imum value o	f <i>x</i> ?			
	a.	10	b.	12	c.	15	d.	None of these
Consi	der the	following fo	r the n	ext two (02) i	tems t	hat follow:	J)"	
For the	e syster	n of linear eq	uations	2x + 3y + 5z	=9,73	x + 3y - 2z = 8	and 2	$x + 3y + \lambda z = \mu.$
35.	Under	what condition	on does	the above sys	stem of	equations hav	e infin	itely many solutions?
	a.	$\lambda = 5$ and $\mu \neq$	4 9		b.	$\lambda = 5$ and $\mu =$	- 9	
	c.	$\lambda = 9$ and $\mu =$	= 5		d.	$\lambda = 5$ and $\mu = $ $\lambda = 9$ and $\mu \neq $	± 5	
36.	Under	what condition	on does	the above sys	stem of	equations hav	e uniq	ue solutions?
	a.	$\lambda = 5$ and $\mu =$	= 9		b.	$\lambda \neq 5$ and $\mu =$	7 only	/
	c.	$\lambda \neq 5$ and μ h	nas any	real value	d.	λ has any rea	l value	and $\mu \neq 9$
37.	What i	s the number	of odd	integers betw	een 10	00 and 9999 w	ith no	digit repeated?
	a.	2100	b.	2120	c.	2240	d.	3331
38.	What i	s the greatest	value o	of the positive	intege	r n satisfying t	the con	dition
$1 + \frac{1}{2} + \frac{1}{2}$	$+\frac{1}{4}+\frac{1}{8}$	$+ \dots + \frac{1}{2^{n-1}} <$	$2 - \frac{1}{100}$	00 ?				
	a.	8	b.	9	c.	10	d.	11
Consi	der the	following fo	r the n	ext two (02) i	tems t	hat follow:		
$2x^{2} +$	$3x-\alpha$	= 0 has roots	–2 and	β while the ed	quation	$x^2 - 3mx + 2n$	$n^2 = 0$	has roots positive, where
$\alpha > 0$	and β >	0.						
39.	What i	s the value of	ξα?					
	a.	1/2	b.	1	c.	2	d.	4
40.	If β, 2,	, 2 <i>m</i> are in GI	P, then	what is the va	lue of [$3\sqrt{m}$?		
	a.	1	b.	2	c.	4	d.	6
BALA	BALAJI TOWER-IV LALGARH PLACE, SECTOR-2, VIDHYADHAR NAGAR, JAIPUR, PH.: 93145-33083							

41.	$\sin A$	$+2\sin 2A + \sin 3A$ is equal to which of the following?
	1.	$4\sin 2A\cos^2\left(\frac{A}{2}\right)$
	2.	$2\sin 2A \left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)^2$

3. $8\sin A\cos A\cos^2\left(\frac{A}{2}\right)$

Select the correct answer using the code given below:

a. 1 and 2 only b. 2 and 3 only

c. 1 and 3 only d. 1, 2 and 3

42. If $x = \sin 70^{\circ} \cdot \sin 50^{\circ}$ and $y = \cos 60^{\circ} \cdot \cos 80^{\circ}$, then what is xy equal to? a. 1/16 b. 1/8 c. 1/4 d. 1/2

43. If $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 + \sin \theta_4 = 4$, then what is the value of $\cos \theta_1 + \cos \theta_2 + \cos \theta_3 + \cos \theta_4$?

a. 0 b. 1 c. 2 d. 4

44. What is the value of $\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)\left(1+\cos\frac{7\pi}{8}\right)$?

a. $\frac{1}{2}$ b. $\frac{1}{2} + \frac{1}{2\sqrt{2}}$ c. $\frac{1}{2} - \frac{1}{2\sqrt{2}}$ d. $\frac{1}{8}$

45. If $x\cos\theta + y\sin\theta = z$, then what is the value of $(x\sin\theta - y\cos\theta)^2$?

a. $x^2 + y^2 - z^2$ b. $x^2 - y^2 - z^2$

c. $x^2 - y^2 + z^2$ d. $x^2 + y^2 + z^2$

46. What is the value of $\cos(2\cos^{-1}0.8)$?

a. 0.81 b. 0.56 c. 0.48 d. 0.28

47. The top of a hill when observed from the top and bottom of a building of height h is at angles of elevation p and q respectively. What is the height of the hill?

a. $\frac{h\cot q}{\cot q - \cot p}$ b. $\frac{h\cot q}{\cot p - \cot q}$

c. $\frac{2h \tan p}{\tan p - \tan q}$ d. $\frac{2h \tan q}{\tan q - \tan p}$

48. If $\sin 18^\circ = \frac{\sqrt{5} - 1}{4}$, then what is the value of $\sin 81^\circ$?

a. $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ b. $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$

0	$\sqrt{3-\sqrt{5}} + \sqrt{5-\sqrt{5}}$
C.	4

d.
$$\frac{\sqrt{3+\sqrt{5}}-\sqrt{5-\sqrt{5}}}{4}$$

49. A moving boat is observed from the top of a cliff of 150 m height. The angle of depression of the boat changes from 60° to 45° in 2 minutes. What is the speed of the boat in metres per hour?

a.
$$\frac{4500}{\sqrt{3}}$$

b.
$$\frac{4500(\sqrt{3}-1)}{\sqrt{3}}$$

c.
$$4500\sqrt{3}$$

d.
$$\frac{4500(\sqrt{3}+1)}{\sqrt{3}}$$

What is $\frac{1-\tan 2^{\circ} \cot 62^{\circ}}{\tan 152^{\circ}-\cot 88^{\circ}}$ equal to? 50.

a.
$$\sqrt{3}$$

b.
$$-\sqrt{3}$$

b.
$$-\sqrt{3}$$
 c. $\sqrt{2}-1$

d.
$$1 - \sqrt{2}$$

An equilateral triangle has one vertex at (0, 0) and another at $(3, \sqrt{3})$. What are the 51. coordinates of the third vertex?

a.
$$(0, 2\sqrt{3})$$
 only

b.
$$(3, -\sqrt{3})$$
 only

c.
$$(0, 2\sqrt{3})$$
 or $(3, -\sqrt{3})$

d. Neither
$$(0, 2\sqrt{3})$$
 nor $(3, -\sqrt{3})$

What is the equation of the right bisector of the line segment joining (1, 1) and (2, 3)? 52.

a.
$$2x+4y-11=0$$

b.
$$2x-4y-5=0$$

d. $x-y+1=0$

c.
$$2x-4y-11=0$$

d.
$$x - y + 1 = 0$$

53. What is the radius of the circle passing through the point (2, 4) and having centre at the intersection of the lines x - y = 4 and 2x + 3y + 7 = 0?

c.
$$3\sqrt{3}$$
 units

$$3\sqrt{3}$$
 units d. $5\sqrt{2}$ units

What is the equation of the hyperbola having latus rectum and eccentrity 8 and $\frac{3}{\sqrt{5}}$ 54.

respectively?

a.
$$\frac{x^2}{25} - \frac{y^2}{20} = 1$$

b.
$$\frac{x^2}{40} - \frac{y^2}{20} = 1$$

c.
$$\frac{x^2}{40} - \frac{y^2}{30} = 1$$

d.
$$\frac{x^2}{30} - \frac{y^2}{25} = 1$$

If the point (a, a) lies between the lines |x + y| = 2, then which one of the following is 55. correct?

a.
$$|a| < 2$$

b.
$$|a| < \sqrt{2}$$

c.
$$|a| < 1$$

$$|a| < 2$$
 b. $|a| < \sqrt{2}$ c. $|a| < 1$ d. $|a| < \frac{1}{\sqrt{2}}$

56. What is the equation of the straight line which passed through the point of intersection of the straight lines x + 2y = 5 and 3x + 7y = 17 and is perpendicular to the straight line 3x + 4y = 10?

	a.	4x + 3y + 2 =	= O		b.	4x - y + 2 = 0	C	
	c.	4x - 3y - 2 =	0		d.	4x - 3y + 2 =	= O	
57.	If (a, b) is at unit dis	stance f	rom the line	8x + 6y	y + 1 = 0, then	which o	of the following
condit	ions are	e correct?						
	1.	3a-4b-4=	0					
	2.	8a + 6b + 11 =	= 0					
	3.	8a + 6b - 9 =	0					
	Select	the correct ar	iswer us	sing the code	given l	pelow:		
	a.	1 and 2 only			b.	2 and 3 only		
	c.	1 and 3 only			d.	1, 2 and 3		
58.	If the	ellipse $9x^2 + 1$	$6y^2 = 1$	44 intersects	s the lin	e 3x + 4y = 12	then	what is the length of the
chord	so form	ned?						
	a.	5 units	b.	6 units	c.	8 units	d.	10 units
59.	A strai	ght line cuts	off an ir	ntercept of 2	units or	the positive of	directio	n of x-axis and passes
throug	the p	oint (-3, 5). V	What is	the foot of th	e perpe	ndicular draw	n from	the point $(3, 3)$ on this
line?						Υ.,		
	a.	(1, 3)	b.	(2, 0)	C.	(0, 2)	d.	(1, 1)
60.	What i	s the eccentri	city of 1	ectangular h	yperbol	a?		
	a.	$\sqrt{2}$	b.	$\sqrt{3}$	c.	$\sqrt{5}$	d.	$\sqrt{6}$
Consi	der the	following fo	r the n	ext two (02)	items t	hat follow:		
Let Q	be the i	mage of the p	ooint P(-2, 1, -5) in	the plar	$e^{3x-2y+2x}$	z + 1 = 0).
61.	Consid	ler the follow	ing:					
	1.	The coordina	ites of C	2 are $(4, -3, -3)$	-1).			
	2.	PQ is of leng	th more	than 8 units				
	3.	The point (1,	-1, -3	is the mid-p	oint of	the line segme	ent PQ	and lies on the given
	plane.							
	Which	of the above	stateme	ents are corre	ect?			
	a.	1 and 2 only			b.	2 and 3 only		
	c.	1 and 3 only			d.	1, 2 and 3		
62.	Consid	ler the follow	ing:					
	1.	The direction	ratios	of the line se	gment I	PQ are < 3, -2	, 2 >.	
	2.	The sum of the	he squa	res of direction	on cosii	nes of the line	segmei	nt PQ is unity.
	Which	of the above	stateme	ents is/are co	rrect?			
	a.	1 only			b.	2 only		
	c.	Both 1 and 2			d.	Neither 1 or	2	
BALA	BALAJI TOWER-IV LALGARH PLACE, SECTOR-2, VIDHYADHAR NAGAR, JAIPUR, PH.: 93145-33083							

Consider the following for the next two (02) items that follow:

A line L passes through the point P(5, -6, 7) and is parallel to the planes x + y + z = 1 and 2x - y - 2z = 3.

- What are the direction ratios of the line of intersection of the given planes? 63.
 - <1,4,3>

b. <-1,-4,3>

<1,-4,3>C.

- d. <1.-4.-3>
- What is the equation of the line L? 64.
 - a. $\frac{x-5}{-1} = \frac{y+6}{4} = \frac{z-7}{-3}$
- b. $\frac{x+5}{-1} = \frac{y+6}{4} = \frac{z+7}{-3}$
- c. $\frac{x-5}{1} = \frac{y+6}{-4} = \frac{z-7}{3}$
- d. $\frac{x-5}{-1} = \frac{y+6}{-4} = \frac{z-7}{-3}$

Consider the following for the next two (02) items that follow:

Let $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = 3\hat{i} + 4\hat{k}$ and $\vec{b} = \vec{c} + \vec{d}$, where \vec{c} is parallel to \vec{a} and \vec{d} is perpendicular to \vec{a} .

- What is \vec{c} equal to? 65.
 - a. $\frac{3(\hat{i}+\hat{j})}{2}$ b. $\frac{2(\hat{i}+\hat{j})}{3}$ c. $\frac{(\hat{i}+\hat{j})}{2}$ d. $\frac{(\hat{i}+\hat{j})}{2}$

- If $\vec{d} = x\hat{i} + y\hat{j} + z\hat{k}$, then which of the following equations is/are correct? 66.
 - 1. y-x=4
 - 2. 2z - 3 = 0

Select the correct answer using the code given below:

1 only a.

b. 2 only

Both 1 and 2 c.

d. Neither 1 nor 2

Consider the following for the next two (02) items that follow:

Let \vec{a} , \vec{b} and \vec{c} be three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, and $|\vec{a}| = 10$, $|\vec{b}| = 6$ and $|\vec{c}| = 14$.

- What is $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ equal to? 67.
 - -332a.
- h. -166
- 0 c.
- d. 166

- What is the angle between \vec{a} and \vec{b} ? 68.
 - 30° a.
- h. 45°
- 60° c.
- 75° d.
- In a right-angled triangle ABC, if the hypotenuse AB = p, then what is 69.

 $\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$ equal to?

- a. p

- d. $\frac{p^2}{2}$

70. A force $\vec{F} = 3\hat{i} + 2\hat{j} - 4\hat{k}$ is applied at the point (1, -1, 2). What is the moment of the force about the point (2, -1, 3)?

a.
$$\hat{i} + 4\hat{j} + 4\hat{k}$$

b.
$$2\hat{i} + \hat{j} + 2\hat{k}$$

c.
$$2\hat{i} - 7\hat{j} - 2\hat{k}$$

d.
$$2\hat{i} + 4\hat{j} - \hat{k}$$

71. What is the domain of the function $f(x) = \frac{1}{\sqrt{|x|-x}}$?

a.
$$(-\infty, 0)$$

b.
$$(0, \infty)$$

c.
$$0 < x < 1$$

$$d. x > 1$$

72. Consider the following in respect of the function $f(x) = \begin{cases} 2+x, & x \ge 0 \\ 2-x, & x < 0 \end{cases}$

1.
$$\lim_{x \to 1} f(x)$$
 does not exist

2.
$$f(x)$$
 is differentiable at $x = 0$.

3.
$$f(x)$$
 is continuous at $x = 0$.

Which of the above statements is/are correct?

1 and 3 only

73. Let $f: A \to \mathbb{R}$, where $A = \mathbb{R} \setminus \{0\}$ is such that $f(x) = \frac{x + |x|}{x}$. On which one of the following

sets is f(x) continuous?

b.
$$B = \{x \in \mathbb{R} : x \ge 0\}$$

c.
$$C = \{x \in \mathbf{R} : x \le 0\}$$

d.
$$D = \mathbf{R}$$

74. Which of the following statements is correct in respect of the function $f(x) = x^3 \sin x$?

a. It has local maximum at
$$x = 0$$
.

b. It has local minimum at
$$x = 0$$
.

c. It has neither maximum nor minimum at
$$x = 0$$
.

75. What is the area bounded by the curves $|y|=1-x^2$?

b. 8/3 squares units

d. 16/3 square units

Consider the following function for the next two (02) items that follow:

$$f(x) = \begin{cases} 3x^2 + 12x - 1, & -1 \le x \le 2\\ 37 - x, & 2 < x \le 3 \end{cases}$$

76. Which of the following statements is/are correct?

1.
$$f(x)$$
 is increasing in the interval $[-1, 2]$.

2.
$$f(x)$$
 is decreasing in the interval $(2, 3]$.

Select the correct answer using the code given below:

a. 1 only

b. 2 only

c. Both 1 and 2 d.

Neither 1 nor 2

77. Which of the following statements are correct?

1. f(x) is continuous at x = 2.

2. f(x) attains greatest value at x = 2.

3. f(x) is differentiable at x = 2.

Select the correct answer using the code given below:

a. 1 and 2 only

b. 2 and 3 only

c. 1 and 3 only

d. 1, 2 and 3

Consider the following for the next three (03) items that follow:

Let $f(x) = \{|x| - |x-1|\}^2$.

78. What is f'(x) equal to when x > 1?

a. 0

b.

2x - 1

2x - 2x = 4x - 2

d. 8x-4

79. What is f'(x) equal to when 0 < x < 1?

a. 0

b. 2x-1

c. 4x-

8x-6

80. Which of the following equations is/are correct?

1. f'(-2) = f(5)

2. f''(-2) + f'''(0.5) + f'''(3) = 4

Select the correct answer using the code given below:

a. 1 only

b. 2 only

c. Both 1 and 2

d. Neither 1 nor 2

Consider the following for the next three (03) items that follow:

Let f(x) = [x], where $[\cdot]$ is the greatest integer function and $g(x) = \sin x$ be two real valued functions over R.

81. Which of the following statements is correct?

a. Both f(x) and g(x) are continuous at x = 0.

b. f(x) is continuous at x = 0, but g(x) is not continuous at x = 0.

c. g(x) is continuous at x = 0, but f(x) is not continuous at x = 0.

d. Both f(x) and g(x) are discontinuous at x = 0.

82. Which one of the following statements is correct?

a. $\lim_{x\to 0} (fog)(x)$ exists

b. $\lim_{x\to 0} (gof)(x)$ exists

c. $\lim_{x\to 0^{-}} (f \circ g)(x) = \lim_{x\to 0^{-}} (g \circ f)(x)$

d. $\lim_{x \to 0+} (f \circ g)(x) = \lim_{x \to 0+} (g \circ f)(x)$

83. Which of the following statements are correct?

1. (fof)(x) = f(x)

2. (gog)(x) = g(x) only when x = 0

3. (go(fog))(x) can take only three values

Select the correct answer using the code given below:

a. 1 and 2 only

b. 2 and 3 only

c. 1 and 3 only

d. 1, 2 and 3

Consider the following for the next two (02) items that follow:

Let $f(x) = \begin{cases} \frac{e^x - 1}{x}, & x > 0 \\ 0, & x = 0 \end{cases}$ be a real valued function.

84. Which one of the following statements is correct?

a. f(x) is a strictly decreasing function in (0, x).

b. f(x) is a strictly increasing function in (0, x).

c. f(x) is neither increasing nor decreasing in (0, x).

d. f(x) is not decreasing in (0, x).

85. Which of the following statements is/are correct?

1. f(x) is right continuous at x = 0.

2. f(x) is discontinuous at x = 1.

Select the correct answer using the code given below:

a. 1 only

b. 2 only

Both 1 and 2 d.

Neither 1 nor 2

Consider the following for the next two (02) items that follow:

Consider the parabola $y = x^2 + 7x + 2$ and the straight line y = 3x - 3.

86. What are the coordinates of the point on the parabola which is closest to the straight line?

a. (0, 2)

b. (-2, -8)

(-7, 2)

d. (1, 10)

87. What is the shortest distance from the above point on the parabola to the line?

a. $\frac{\sqrt{1}}{2}$

b. $\frac{\sqrt{10}}{5}$

c. $\frac{1}{\sqrt{10}}$

d. $\frac{\sqrt{5}}{4}$

Consider the following for the next three (03) items that follow:

Let $f(x) = \begin{cases} -2, & -3 \le x \le 0 \\ x - 2, & 0 < x \le 3 \end{cases}$ and g(x) = f(|x|) + |f(x)|

88. Which of the following statements is/are correct?

1. g(x) is differentiable at x = 0.

2. g(x) is differentiable at x = 2.

	a.	-2	b.	0	c.	1	d.	2	
90.	Which	of the follow	ing sta	tements are co	orrect?				
	1.	1. $g(x)$ is continuous at $x = 0$.							
	2.	g(x) is continuous at $x = 2$.							
	3.	g(x) is conti	nuous	at $x = -1$.					
	Select	the correct an	iswer u	sing the code	given b	pelow:			
	a.	1 and 2 only			b.	2 and 3 only			
	c.	1 and 3 only			d.	1, 2 and 3			
91.	Let f	(x) be a funct	ion suc	ch that					
$f'\left(\frac{1}{x}\right)$	$+ x^3 f$	y'(x) = 0. Wha	at is \int_{-1}^{1}	f(x) dx equal	to?				
a.	2 <i>f</i> (1)	b.	0	c.	2 <i>f</i> (–	l) d.	4 <i>f</i> (1)		
92.	What i	s $\int \frac{x^4 - 1}{x^2 \sqrt{x^4 + x^4}}$	$\frac{1}{c^2+1}$ d	'x equal to?		5			
	a.	$\sqrt{\frac{x^4 + x^2 + 1}{x}}$	+ c		b.	$\sqrt{x^4 + 2 - \frac{1}{x^2}}$	+ c		
	c.	$\sqrt{x^2 + \frac{1}{x^2} + 1}$	+c		d.	$\sqrt{\frac{x^4 - x^2 + 1}{x}}$	+ c		
93.	What a	are the degree	and or	der respective	ely of th	ne differential	equatio	on satisfying	
$e^{y\sqrt{1-x^2}}$	$+x\sqrt{1-y^2}$	$=ce^{x}$, (where	c > 0,	x < 1, y <	1)?				
	a.			1, 2		2, 1	d.	2, 2	
94.	What i	s the curve w	hich pa	asses through t	the poi	nt (1, 1) and w	hose s	lope is $\frac{2y}{x}$?	
	a.	Circle	b.	Parabola	c.	Ellipse	d.	Hyperbola	
95.	If $x dy$	$= y dx + y^2 dy$	y > 0	0 and $y(1) = 1$, then v	what is $y(-3)$	equal t	co?	
	a.	3 only			b.	−1 only			
c.	Both -	-1 and 3		d.	Neithe	er –1 nor 3			
96.	What i	s the order of	the dif	fferential equa	tion $\frac{dy}{dy}$	$\frac{x}{y} + \int y dx = x^3$?		
	a.	1	b.	2	c.	3	d.	Cannot be determined	
BALA	JI TOW	'ER-IV LALGA	RH PLA	ACE, SECTOR	-2, VIDI	HYADHAR NAG	GAR, JA	AIPUR, PH.: 93145-33083	

Select the correct answer using the code given below:

b.

1 only

a.

89.

2 only

What is the value of the differential coefficient of g(x) a x = -2?

c.

Both 1 and 2 d.

Neither 1 nor 2

97.	Which	one of the following differential e	equatio	ns represents the family of straight lines
which	are at 1	unit distance from the origin?		
	a.	$\left(y - x\frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$	b.	$\left(y + x\frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$
	c.	$\left(y - x\frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$	d.	$\left(y + x\frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$

98. What is
$$\int e^{\sin x} \frac{x \cos^3 x - \sin x}{\cos^2 x} dx$$
 equal to?

- a. $(x + \sec x)e^{\sin x} + c$ b. $(x \sec x)e^{\sin x} + c$
- c. $(x + \tan x)e^{\sin x} + c$ d. $(x \tan x)e^{\sin x} + c$
- 99. If $\int_{0}^{\pi/2} \frac{dx}{3\cos x + 5} = k \cot^{-1} 2$, then what is the value of k?
- a. 1/4 b. 1/2 c. 1 d. 2
- 100. What is $\int_{1}^{3} |1-x^4| dx$ equal to? a. -232/5 b. -116/5 c. 116/5 d. 232/5
- 101. A special dice with numbers 1, -1, 2, -2, 0 and 3 is thrown thrice. What is the probability that the sum of the numbers occurring on the upper face is zero?
 - a. 1/72 b. 1/8 c. 7/72 d. 25/216
- 102. There is 25% chance that is rains on any particular day. What is the probability that there is at least one rainy day within a period of 7 days?
 - a. $1 \left(\frac{1}{4}\right)^7$ b. $\left(\frac{1}{4}\right)^7$ c. $\left(\frac{3}{4}\right)^7$ d. $1 \left(\frac{3}{4}\right)^7$
- 103. A salesman has a 70% chance to sell a product to any customer. The behaviour of successive customers is independent. If two customers A and B enter, what is the probability that the salesman will sell the product to customer A or B?
 - a. 0.98 b. 0.91 c. 0.70 d. 0.49
- 104. A student appears for tests I, II and III. The student is considered successful if he passes in tests I, II or I, III or all the three. The probabilities of the student passing in tests I, II and III are m, n and 1/2 respectively. If the probability of the student to be successful is 1/2, then which one of the following is correct?
 - a. m(1+n)=1 b. n(1+m)=1
 - c. m = 1 d. mn = 1

105. Three candidates solve a question. Odds in favour of the correct answer are 5 : 2, 4 : 3 and 3:4 respectively for the three candidates. What is the probability that at least two of them solve the question correctly?

- a. 209/343
- b. 134/343
- c. 149/343
- d. 60/343

106. Consider the following statements:

- 1. The mean and medium are equal in symmetric distribution.
- 2. The range is the difference between the maximum value and the minimum value in the data.
- 3. The sum of the areas of the rectangles in the histogram is equal to the total area bounded by the frequency polygon and the horizontal axis.

Which of the above statements are correct?

a. 1 and 2 only

b. 2 and 3 only

c. 1 and 3 only

d. 1, 2 and 3

107. The scores of 15 students in an examination were recorded as 10, 5, 8, 16, 18, 20, 8, 10, 16, 20, 18, 11, 16, 14 and 12. After calculating the mean, median and mode, an error is found. One of the values is wrongly written as 16 instead of 18. Which of the following measures of central tendency will change?

- a. Mean and median
- b. Median and mode

c. Mode only

- d. Mean and mode
- 108. For 10 observations on price (x) and supply (y), the following data was obtained:

$$\sum x = 130$$
, $\sum y = 220$, $\sum x^2 = 2288$, $\sum y^2 = 5506$ and $\sum xy = 3467$.

What is the line of regression of y on x?

- a. y = 0.91x + 8.74
- b. y = 1.02x + 8.74

c. y = 1.02x - 7.02

 $d. \qquad y = 0.91x - 7.02$

109. In a study of two groups, the following results were obtained:

	Group A	Group B
Sample size	20	25
Sample mean	22	23
Sample standard deviation	10	12

Which of the following statements is correct?

- a. Group A is less variable than Group B because Group A's standard deviation is smaller.
- b. Group A is less variable than Group B because Group A's sample size is smaller.
- c. Group A is less variable than Group B because Group A's sample mean is smaller.

	3.	Class interv	als need	not be of equ	ual widt	th.		
	Whic	h of the abov	e statem	ents are corre	ect?			
	a.	1 and 2 only	/		b.	2 and 3 only	7	
	c.	1 and 3 only	/		d.	1, 2 and 3		
111.	A me	dicine is know	wn to be	75% effective	e to cu	re a patient. I	f the me	edicine is given to 5
patier	nts, wha	at is the proba	ability th	nat at least one	e patien	it is cured by	this me	dicine?
	a.	$\frac{1}{1024}$	b.	$\frac{243}{1024}$	c.	$\frac{1023}{1024}$	d.	$\frac{781}{1024}$
112.								$P(A \mid B) = \frac{2}{3}$. If \overline{A} and \overline{B}
are th	e comp	olementary ev	ents of	A and B, then	what i	s $P(\overline{A} \overline{B})$ eq	ual to?	
	a.	$\frac{3}{7}$	b.	$\frac{3}{4}$	c.	$\frac{1}{3}$	d.	$\frac{4}{7}$
113.	A ma	chine has thre	ee parts	A, B and C, v	whose c	hances of bei	ng defe	ctive are 0.02, 0.10 and
0.05 1								nes defective. What is the
				not stop work		•		
•	a.	0.06		_	_	0.84	d.	0.94
	- T-1							. 1
114.	Three	independent	events A	A_1, A_2 and A_3	occur v	vith probabili	ties $P(A)$	$(A_i) = \frac{1}{1+i}, i = 1, 2, 3.$
What	is the p	probability th	at at leas	st one of the t	hree ev	ents occurs?		
		1	L	2		3	a a	1
	a.	$\overline{4}$	D.	3	C.	$\frac{3}{4}$	a.	24
115.	Two	variables, x a	nd y, are	uncorrelated	and ha	ve standard d	eviation	ns σ_x and
σ_{y} res	spective	ely. What is t	he corre	lation coeffic	eient bet	tween $x + y$ a	and $x-$	y ?
		σσ		$\sigma + \sigma$		$\sigma^2 - \sigma^2$		$\sigma = \sigma$
	a.	$\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} s$	b.	$\frac{\sigma_x + \sigma_y}{2\sigma_x \sigma_y}$	c.	$\frac{\sigma_x^2 - \sigma_y^2}{\sigma_x^2 + \sigma_y^2}$	d.	$\frac{\sigma_y - \sigma_x}{\sigma_x \sigma_y}$
116.	A ran	dom sample	of 20 pe	ople is classif	fied in t	he following	table ac	ecording to their ages:
				Age	Fre	quency		
				Age 15 - 25		2		
BAL	AJI TOV	VER-IV LALG	ARH PL	ACE, SECTOR	R-2, VID	HYADHAR NA	GAR, J	AIPUR, PH.: 93145-33083

Group A is less variable than Group B because Group A's coefficient of variation is

Consider the following statements in respect of class intervals of grouped frequency

Class intervals need not be mutually exclusive.

Class intervals should be exhaustive.

d.

distribution:

2.

110.

smaller.

25 - 35	4
35 - 45	6
45 - 55	5
55 - 65	3

What is the mean age of this group of people?

41.0 a.

h. 41.5

42.0 c.

42.5 d.

117. If the covariance between x and y is variance of x is 25 and variance of y is 144, then what is the correlation coefficient?

a. 0.4 h. 0.5 c. 0.6

d. 0.7

118. A coin is tossed three times. Consider the following events:

> A: No head appears

B: Exactly one head appears

C: At least two heads appear

Which one of the following is correct?

 $(A \cup B) \cap (A \cup C) = B \cup C$

 $(A \cap B') \cup (A \cap C') = B' \cup C'$

 $A \cap (B' \cup C') = A \cup B \cup C$ d. c.

 $A \cap (B' \cup C') = B' \cap C'$

In a series of 3 one-day cricket matches between teams A and B of a college, the probability of team A winning or drawing are 1/3 and 1/6 respectively. If a win, loss or draw gives 2, 0 and 1 point respectively, then what is the probability that team A will score 5 points in the series?

a.

 $\frac{11}{12}$ c. $\frac{1}{12}$ d. $\frac{1}{18}$

Let the random variable X follow B(6, p). If 16P(X = 4) = P(X = 2), then what is the value 120. of p?