NDA PAPER APRIL 2017

1. What is the value of tan 18°?
(a)
$$\frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$$
 (b) $\frac{\sqrt{5}-1}{\sqrt{10+\sqrt{5}}}$ (c) $\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}$ (d) $\frac{\sqrt{10+\sqrt{5}}}{\sqrt{5}-1}$
2. Let x, y, z be positive real numbers such that x, y, z are in GP and tan⁻¹x, tan⁻¹y and tan⁻¹z are in AP. Then which one of the following is correct?
(a) x = y = z (b) xz = 1 (c) x \neq y and y=z (d) x = y and y \neq z
3. If tan $(\alpha + \beta) = 2$ and tan $(\alpha - \beta) = 1$, then tan 2α is equal to :
(a) -3 (b) -2 (c) $-\frac{1}{3}$ (d) 1
4. Consider the following for triangle ABC :
(1) $\sin\left(\frac{B+C}{2}\right) = \cos\left(\frac{A}{2}\right)$ (2) $\tan\left(\frac{B+C}{2}\right) = \cot\left(\frac{A}{2}\right)$
(3) sin (B+ C) = cos A (4) tan (B+ C) = -- cot A
Which of the above are correct?
(a) 1 and 3 (b) 1 and 2 (c) 1 and 4 (d) 2 and 3
5. If sec θ - cose $\theta = \frac{4}{3}$, then what is (sin θ - cos θ) equal to?
(a) -2 only (b) $\frac{1}{2}$ only (c) Both -2 and $\frac{1}{2}$ (d) Neither $\frac{1}{2}$ nor -2
6. If a vertex of a triangle is (1, 1) and the midpoints of two sides of the triangle through this vertex are (-1, 2) and (3, 2), then the centroid of the triangle is:
(a) $\left(-\frac{1}{3}, \frac{7}{3}\right)$ (b) $\left(-1, \frac{7}{3}\right)$ (c) $\left(\frac{1}{3}, \frac{7}{2}\right)$ (d) $\left(1, \frac{7}{3}\right)$
7. The incentre of the triangle with vertices A $(1, \sqrt{3})$, B (0, 0) and C (2, 0) is :
(a) $\left(1, \frac{\sqrt{3}}{2}\right)$ (b) $\left(\frac{2}{3}, \frac{\sqrt{3}}{\sqrt{3}}\right)$ (c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$ (d) $\left(1, \frac{1}{\sqrt{3}}\right)$
8. If the three consecutive vertices of a parallelogram are (-2, -1), (1, 0) and (4, 3), then what are the co-ordinates of the fourth vertex?
(a) (1, 2) (b) (1, 0) (c) (0, 0) (d) (1, -1)

9.	The two circles $x^2 + y^2 = r^2$ and $x^2 + y^2 - 10x + 16 = 0$ intersect at two distinct points, then			
	which one of the following is correct?			
	(a) $2 < r < 8$	(b) $r = 2$ or $r = 8$	(c) <i>r</i> < 2	(d) $r > 2$
10.	What is the equation of the eq	circle which passes thro	ough the points (3, -	2) and (-2, 0) and having
	its centre on the line $2x - y$ -	-3 = 0?		
	(a) $x^2 + y^2 + 3x + 2 = 0$		(b) $x^2 + y^2 + 3x + $	12y + 2 = 0
	(c) $x^2 + y^2 + 2x = 0$		(d) $x^2 + y^2 = 5$	
11.	What is the ratio in which the	the point $C\left(-\frac{2}{7},-\frac{20}{7}\right) d$	livides the line joini	ng the points A $(-2, -2)$
	and B (2, - 4)?			
	(a) 1 : 3	(b) 3 : 4	(c) 1 : 2	(d) 2 : 3
12.	What is the equation of the eq	ellipse having foci (±2,	0) and the eccentric	city $\frac{1}{4}$?
	(a) $\frac{x^2}{64} + \frac{y^2}{60} = 1$	(b) $\frac{x^2}{60} + \frac{y^2}{64} = 1$	(c) $\frac{x^2}{20} + \frac{y^2}{24} = 1$	(d) $\frac{x^2}{24} + \frac{y^2}{20} = 1$
13.	What is the equation of the s	straight line parallel to 2	2x + 3y + 1 = 0 and	passes through the point
	(-1, 2)?			
	(a) $2x + 3y - 4 = 0$	(b) $2x + 3y - 5 = 0$	(c) $x + y - 1 = 0$	(d) $3x - 2y + 7 = 0$
14.	What is the acute angle betw	veen the pair of straight	lines $\sqrt{2}x + \sqrt{3}y =$	1 and $\sqrt{3}x + \sqrt{2}y = 2$?
	(a) $\tan^{-1}\left(\frac{1}{2\sqrt{6}}\right)$	(b) $\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$	(c) $\tan^{-1}(3)$	(d) $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$
15.	If the centroid of a triangle f	Formed by $(7, x)$, $(y, -6)$	and (9, 10) is (6, 3	3), then the values of
	x and y are respectively:			
	(a) 5, 2	(b) 2, 5	(c) 1, 0	(d) 0, 0
16.	The equations:			
			1	
		x + 2y + 3z = $2x + y + 3z =$	2	
		5x + 5y + 9z =	- 4	
	(a) have the unique solution	<i>,</i> , , , , , , , , , , , , , , , , , ,	(b) have infinitely	many solutions
	(c) are inconsistent		(d) None of the ab	oove
BA	LAJI TOWER-IV LALGARH PL	ACE, SECTOR-2, VIDHY	ADHAR NAGAR, JA	IPUR, PH.: 93145-33083

31.	The sum of the roots of the equation $x^2 + bx + c = 0$ (where <i>b</i> and <i>c</i> are non-zero) is equal to			
	the sum of the reciprocals of their squares. Then $\frac{1}{c}, b, \frac{c}{b}$ are in :			
32.	(a) AP The sum of the roots of the	(b) GP equation $ax^2 + x + c = 0$	(c) HP (where a and c are	(d) None of the above non-zero) is equal to
	the sum of the reciprocals o	f their squares. Then a,	ca^2 , c^2 are in :	
33.	(a) AP The value of	(b) GP	(c) HP	(d) None of the above
	[C(7,0)+C(7,1)]	[] + [C(7,1) + C(7,2)] +	+[C(7,6)+C	C(7,7)]
	is :			
34.	(a) 254(c) 256The number of different wo	rds (eight-letter words)	(b) 255 (d) 257 ending and beginnin	ng with a consonant
	which can be made out of the	he letters of the word "I	EQUATION" is :	
35.	 (a) 5200 (c) 3000 The fifth term of an AP of <i>r</i> 	<i>t</i> terms, whose sum is n	(b) 4320 (d) 2160 $a^2 - 2n$ is :	
36.	(a) 5(c) 8The sum of all the two-digit	t odd numbers is :	(b) 7 (d) 15	
37.	 (a) 2475 (c) 4905 The sum of the first <i>n</i> terms 	of the series:	(b) 2530 (d) 5049	
		$\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} +$	·	
	is equal to :			
	(a) $2^n - n - 1$ (c) $2^{-n} + n - 1$		(b) $1-2^{-n}$ (d) $2^n - 1$	
38.	Consider the following in re-	espect of sets A and B:		
	1. $(A - B) \cup B = A$			
	2. $(A - B) \cup A = A$			
	3. $(A - B) \cap B = \phi$			
	4. $A \subseteq B \Rightarrow A \cup B = B$			
BA	LAJI TOWER-IV LALGARH PL	ACE, SECTOR-2, VIDH	YADHAR NAGAR, JA	IPUR, PH.: 93145-33083

Г

	Which of the above are correct?			
	(a) 1, 2 and 3	(b) 2, 3 and 4	(c) 1, 3 and 4	(d) 1, 2 and 4
39.	In the binary equation :			
		$(1p101)_2 + (10q1)_2 =$	$(100r00)_2$	
	where p, q and r are binary	digits, what are the poss	sible values of p, q a	and r respectively :
40.	(a) 0, 1, 0 If $S = \{x : x^2 + 1 = 0, x \text{ is real} \}$	(b) 1, 1, 0 al}, then <i>S</i> is :	(c) 0, 0, 1	(d) 1, 0, 1
41.	(a) $\{-1\}$ The expansion of $(x - y)^n$, <i>r</i>	(b) $\{0\}$ $n \ge 5$ is done in the desce	(c) $\{1\}$ ending powers of <i>x</i> .	(d) an empty set If the sum of the fifth
	and sixth terms is zero, ther	$\frac{x}{y}$ is equal to :		C / a.
	(a) $\frac{n-5}{6}$	(b) $\frac{n-4}{5}$	(c) $\frac{5}{n-4}$	(d) $\frac{6}{n-5}$
42.	If $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and det $[A^3]$	$ = 125$, then α is equal	to:	
43.	(a) ±1 If B is a non-singular matrix	(b) ±2 x and A is a square mat	(c) ± 3 then the value of	(d) ± 5 f det [B ⁻¹ AB} is equal
	to :			
44.	(a) det (B) If $a \neq b \neq c$, then one value	(b) det (A) of <i>x</i> which satisfies the	(c) det (B^{-1}) equation:	(d) det (A^{-1})
		$ \begin{vmatrix} 0 & x-a & x-a \\ x+a & 0 & x-a \\ x+b & x+c & 0 \end{vmatrix} $	$\begin{vmatrix} b \\ c \end{vmatrix} = 0$	
	is given by :			
	(a) <i>a</i>	(b) <i>b</i>	(c) <i>c</i>	(d) 0
45.	If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, the	n what is AA ^T equal to	(where A^{T} is the transformed end of A^{T} is the transformed end o	nspose of A)?
	(a) Null matrix	(b) Identity matrix	(c) A	(d) - A
46.	Let S be the set of all person	ns living in Delhi. We s	ay that <i>x</i> , <i>y</i> in S are	related if they were born
	in Delhi on the same day. W	Which one of the followi	ing is correct?	
BA	LAJI TOWER-IV LALGARH PL	ACE, SECTOR-2, VIDH	ADHAR NAGAR, JA	IPUR, PH.: 93145-33083

Γ

(a) The relation is an equivalent relation (b) The relation is not reflexive but it is symmetric and transitive (c) The relation is not symmetric but it is reflexive and transitive (d) The relation is not transitive but it is reflexive and symmetric Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Then the number subsets of A containing two or three 47. elements is : (a) 45 (b) 120 (c) 165 (d) 330 The value of $i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3}$ where $i = \sqrt{-1}$ is: 48. (a) 0(b) 1 (c) *i* (d) - *i* If the difference between the roots of the equation $x^2 + kx + 1 = 0$ is strictly less than $\sqrt{5}$, 49. where $|k| \ge 2$, then k can be any element of the interval : (a) $(-3, -2] \cup [2, 3)$ (b) (-3, 3)(c) $[-3, -2] \cup [2, 3]$ (d) None of the above If the roots of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation 50. $x^{2} + lx + m = 0$, then which one of the following is correct? (b) $m^2 p = l^2 q$ (c) $m^2 p = q^2 l$ (d) $m^2 p^2 = l^2 q$ (a) $p^2 m = l^2 q$ The value of $\left(\frac{-1+i\sqrt{3}}{2}\right)^n + \left(\frac{-1-i\sqrt{3}}{2}\right)^n$, where *n* is not a multiple of 3 and $i = \sqrt{-1}$ is: 51. (b) –1 (d) -i(a) 1 (c) *i* Three-digit numbers are formed from the digits 1, 2 and 3 in such a way that the digits are not 52. repeated. What is the sum of such three-digit numbers? (a) 1233 (b) 1322 (c) 1323 (d) 1332 What is the sum of the series $0.3 + 0.33 + 0.333 + \dots n$ terms? 53. (a) $\frac{1}{3} \left| n - \frac{1}{9} \left(1 - \frac{1}{10^n} \right) \right|$ (b) $\frac{1}{3} \left| n - \frac{2}{9} \left(1 - \frac{1}{10^n} \right) \right|$ (c) $\frac{1}{3} \left[n - \frac{1}{3} \left(1 - \frac{1}{10^n} \right) \right]$ (d) $\frac{1}{3} \left[n - \frac{1}{9} \left(1 + \frac{1}{10^n} \right) \right]$ If 1, ω , ω^2 are the cube roots of unity, then $(1 + \omega)(1 + \omega^2)(1 + \omega^3)(1 + \omega + \omega^2)$ is equal to : 54. (a) - 2(b) - 1(c) 0(d) 2BALAJI TOWER-IV LALGARH PLACE, SECTOR-2, VIDHYADHAR NAGAR, JAIPUR, PH.: 93145-33083

55.	If the sum of <i>m</i> terms of an AP is <i>n</i> and the sum of <i>n</i> terms is <i>m</i> , then the sum of $(m+n)$ terms			
	is:			
	(a) <i>mn</i>	(b) <i>m</i> + <i>n</i>	(c) 2 (<i>m</i> + <i>n</i>)	(d) - (m+n)
			1+2i	
56.	The modulus and principal	argument of the compl	ex number $\frac{1+2i}{1-(1-i)}$	$\frac{1}{2}$ are respectively :
	(a) (1, 0)	(b) (1, 1)	(c) (2, 0)	(d) (2, 1)
57.	If the graph of a quadratic p	oolynomial lies entirely	above <i>x</i> -axis, then v	which one of the
	following is correct?			
	(a) Both the roots are real			
	(b) One root is real and the	other is complex		
	(c) Both the roots are comp	lex		
	(d) Cannot say			
58.	If $ z + 4 \le 3$, then the maxim	num value of $ z + 1 $ is:	N.	
	(a) 0	(b) 4	(c) 6	(d) 10
59.	The number of roots of the	equation $z^2 = 2 \overline{z}$ is :		
	(a) 2	(b) 3	(c) 4	(d) Zero
60.	If $\cot \alpha$ and $\cot \beta$ are the ro	bots of the equation x^2 +	$bx + c = 0$ with $b \neq b$	0, then the value of
	$\cot (\alpha + \beta)$ is:	$\langle \langle X \rangle \rangle$		
	(a) $\frac{c-1}{b}$	(b) $\frac{1-c}{b}$	(c) $\frac{b}{c-1}$	(d) $\frac{b}{1-c}$
61.	For two dependent events A	A and B, it is given that	P(A) = 0.2 and $P(B)$	$= 0.5$. If A \subseteq B, then
	the values of conditional pr	obabilities P(A B) and	P(B A) are respectiv	ely:
	(a) $\frac{2}{5}, \frac{3}{5}$		(b) $\frac{2}{5}$, 1	
	(c) 1, $\frac{2}{5}$		(d) Information is	insufficient
62.	A point is chosen at random	n inside a circle. What i	is the probability tha	t the point is closer to
	the centre of the circle than	to its boundary?		
	(a) $\frac{1}{5}$	(b) $\frac{1}{4}$	(c) $\frac{1}{3}$	(d) $\frac{1}{2}$
63.	If two regression lines betw	veen height (x) and weight	ght (y) are $4y - 15x -$	+410 = 0 and
	30x - 2y - 825 = 0, then wh	nat will be the correlation	on coefficient betwee	en height and weight?
1				

Γ

	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{3}{4}$
64.	In an examination, 40% o	f candidates got second	class. When the	lata are represented by a
	pie-chart, what is the angl	e corresponding to seco	ond class?	
	(a) 40°	(b) 90°	(c) 144°	(d) 320°
65.	Consider the following sta	atements :		
	Statement-1 : Range is	not a good measure of	dispersion.	
	Statement-2 : Range is	highly affected by the	existence of extre	me values.
	Which one of the following	ng is correct in respect of	of the above states	nents?
	(a) Both Statement-1 and	Statement-2 are correct	and Statement-2	is the correct explanation of
	Statement-1.			
	(b) Both Statement-1 and	Statement_2 are correct	· hut Statement_?	is not the correct explanation
	of Statement-1.	Statement-2 are correct	out Statement-2	is not the correct explanation
	(c) Statement-1 is correct	but Statement-2 is not o	correct	
	(d) Statement-2 is correct	but Statement-1 is not	correct	
66.	A card is drawn from a we	ell-shuffled ordinary de	ck of 52 cards. W	hat is the probability that
	it is an ace?			
	(a) $\frac{1}{13}$	(b) $\frac{2}{13}$	(c) $\frac{3}{13}$	(d) $\frac{1}{52}$
67.	If the data are moderately	non-symmetrical, then	which one of the	following empirical
	relationships is correct?			
	(a) $2 \times$ Standard deviation	$1 = 5 \times Mean deviation$		
	(b) $5 \times$ Standard deviation	$n = 2 \times Mean deviation$		
	(c) $4 \times$ Standard deviation	$h = 5 \times Mean deviation$		
	(d) $5 \times$ Standard deviation	$n = 4 \times Mean deviation$		
68.	Data can be represented in	n which of the following	g forms?	
	(1) Textual form]	(2) Tabular form	(3) Graphical	form
	Select the correct answer	using the code given be	low:	
	(a) 1 and 2 only	(b) 2 and 3 only	(c) 1 and 3 on	ly (d) 1, 2 and 3

69.	For given statistical data, the	e graphs for less than og	give and more than	ogive are drawn. If the
	point at which the two curve	es intersect is P, then ab	oscissa of point P gi	ves the value of which
	one of the following measur	res of central tendency?		
	(a) Median	(b) Mean	(c) Mode	(d) Geometric mean
70.	Consider the following state	ements:		
	1. Two events are mutually	v exclusive if the occurr	ence of one event p	revents the occurrence
	of the other.			
	2. The probability of the un	nion of two mutually ex	clusive events is the	e sum of their individual
	probabilities.			CN
	Which of the above stateme	ents is/are correct?		
	(a) 1 only	(b) 2 only	(c) Both 1 and 2	(d) Neither 1 nor 2
71.	If the regression coefficient	of x on y and y on x are	$-\frac{1}{2}$ and $-\frac{1}{8}$ respectively.	ctively, then what is the
	correlation coefficient betw	een x and y?		
	$(a) = \frac{1}{2}$	(b) $-\frac{1}{2}$	$(c) \frac{1}{1}$	(d) $\frac{1}{1}$
	$(a) \frac{1}{4}$	$(0) \frac{16}{16}$	$(c) \frac{16}{16}$	$(u) \frac{1}{4}$
72.	A sample of 5 observations	has mean 32 and media	n 33. Later it is fou	nd that an observation
	was recorded incorrectly as	40 instead of 35. If we	correct the data, the	n which one of the
	following is correct?			
	(a) The mean and median re	emain the same		
	(b) The median remains the	same but the mean will	decrease	
	(c) The mean and median be	oth will decrease		
	(d) The mean remains the sa	ame but median will dec	crease	
73.	If two fair dice are thrown,	then what is the probabi	lity that the sum is	neither 8 nor 9?
	(a) $\frac{1}{-}$	(b) $\frac{1}{1}$	(c) $\frac{3}{1}$	(d) $\frac{5}{4}$
	6	4	4	6
				_
74.	Let A and B are two mutual	ly exclusive events with	$P(A) = \frac{1}{3}$ and $P(B)$	$=\frac{1}{4}$. What is the
	value of $P(\overline{A} \cap \overline{B})$?			
	$(a)^{1}$	(b) 1	$(2)^{1}$	(d) 5
	$\binom{a}{6}$	$(0) - \frac{1}{4}$	$(c) \frac{1}{3}$	$\frac{1}{12}$
R۵	I A.II TOWER-IV I AI GARH PI	ACE SECTOR-2 VIDHY		IPUR, PH : 93145-33083

75.	The mean and standard deviation of a binomial distribution are 12 and 2 respectively. What is			
	the number of trails?			
	(a) 2	(b) 12	(c) 18	(d) 24
76.	What is the solution of the	differential equation?		
		$ln\left(\frac{dy}{dx}\right) - a =$	- 0	
	(a) $y = xe^a + c$	(b) $x = ye^{a} + c$	(c) $y = \ln x + c$	(d) $x = \ln y + c$
77.	Let $f(x)$ be defined as follow	ows :		
		(2x+1, -3)	< x < -2	$C \mid A$
		$f(x) = \begin{cases} x - 1, & -2 \end{cases}$	$2 \le x < 0$	
		$\left(x+2, \right)$	$0 \le x < 1$	
	Which one of the following	statements is correct in	n respect of the abov	e function?
	(a)	It is discontinuous at	x = -2 but continuo	us at every other point.
	(b) It is continuous only	in the interval $(-3, -2)$).	
	(c) It is discontinuous at	x = 0 but continuous a	t every other point.	
	(b) It is discontinuous at	t every point.		
78.	Consider the following state	ements:		
	(1) If $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$	b) both exist, then $\lim_{x \to a} \{$	f(x)g(x) exists.	
	(2) If $\lim_{x \to a} \{f(x)g(x)\}$ exists	s, then both $\lim_{x \to a} f(x)$ ar	$\lim_{x \to a} g(x) \text{must ex}$	ist.
	Which of the above stateme	ents is/are correct?		
	(a) 1 only	(b) 2 only	(c) Both 1 and 2	(d) Neither 1 nor 2
79.	Which one of the following	functions is neither ev	en nor odd?	
	(a) $x^2 - 1$	(b) $x + \frac{3}{x}$	(c) / <i>x</i> /	(d) $x^2(x-3)$
80.	What is the derivative of lo	$g_{10} (5x^2 + 3)$ with respe	ct to x ?	
	(a) $\frac{x \log_{10} e}{5x^2 + 3}$	(b) $\frac{2x\log_{10}e}{5x^2+3}$	(c) $\frac{10x\log_{10}e}{5x^2+3}$	(d) $\frac{10x\log_e 10}{5x^2 + 3}$
81.	Let $f(a) = \frac{a-1}{a+1}$. Consider	the following :		
	1. $f(2a) = f(a) + 1$			
BA	LAJI TOWER-IV LALGARH PL	ACE, SECTOR-2, VIDH	YADHAR NAGAR, JA	NPUR, PH.: 93145-33083

Г

2. $f\left(\frac{1}{a}\right) = -f(a)$ Which of the above is/are correct? (a) 1 only (b) 2 only(c) Both (1) and (2) (d) Neither 1 nor 2 What is the maximum area of a triangle that can be inscribed in a circle of radius *a*? 82. (c) $\frac{3\sqrt{3}a^2}{4}$ (d) $\frac{\sqrt{3a^2}}{4}$ (a) $\frac{3a^2}{4}$ (b) $\frac{a^2}{2}$ 83. Let $f(x) = x + \frac{1}{x}$, where $x \in (0, 1)$. Then which one of the following is correct? (b) f(x) increases in the interval (a) f(x) fluctuates in the interval (c) f(x) decreases in the interval (d) None of the above Suppose the function $f(x) = x^n$, $n \neq 0$ is differentiable for all *x*. Then *n* can be any element of 84. the interval: $\frac{1}{2},\infty$ (b) (0, ∞) (d) None of the above (a) $(1, \infty)$ 85. What is $\int_{e^{-1}}^{e^2} \left| \frac{\ln x}{x} \right| dx$ equal to : (b) $\frac{5}{2}$ (a) $\frac{3}{2}$ (c) 3(d) 4The variance of 20 observations is 5. If each observation is multiplied by 3, then what is the 86. new variance of the resulting observations? (a) 5 (b) 10 (c) 15 (d) 45 The mean of a group of 100 observations was found to be 20. Later it was found that 87. four observations were incorrect, which were recorded as 21, 21, 18 and 20. What is the mean if the incorrect observations are omitted? (a) 18 (b) 20 (c) 21(d) 22 A committee of two persons is constituted from two men and two women. What is the 88. probability that the committee will have only women? (c) $\frac{1}{2}$ (d) $\frac{2}{3}$ (b) $\frac{1}{2}$ (a) $\frac{1}{\epsilon}$

89. A question is given to three students A, B and C whose chances of solving it are
$$\frac{1}{2} \cdot \frac{1}{3}$$
 and $\frac{1}{4}$
respectively. What is the probability that the question will be solved?
(a) $\frac{1}{24}$ (b) $\frac{1}{4}$ (c) $\frac{3}{4}$ (d) $\frac{23}{24}$
90. The mean weight of 150 students in a certain class is 60 kg. The mean weight of boys in the class is 70 kg and that of girls is 55 kg. What is the number of boys in the class?
(a) 50 (b) 55 (c) 60 (d) 100
91. What is $\int \frac{(x^{e^{-1}} + e^{i^{-1}})dx}{x^e + e^i}$ equal to?
(a) $\frac{x^2}{2} + c$ (b) $ln(x + e) + c$ (c) $ln(x^e + e^e) + c$ (d) $\frac{1}{e}ln(x^e + e^e) + c$
92. Let $f: [-6, 6] \rightarrow \mathbb{R}$ be defined by $f(x) = x^2 - 3$. Consider the following :
1. $(f \circ f \circ f)(-1) = (f \circ f \circ f)(1) = (f \circ f)(0)$
Which of the above is/are correct?
(a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2
93. Let $f(x) = px + q$ and $g(x) = mx + n$. Then $f(g(x)) = g(f(x))$ is equivalent to :
(a) $f(\rho) = g(m)$ (b) $f(q) = g(n)$ (c) $f(n) = g(q)$ (d) $f(m) = g(\rho)$
94. If $F(x) = \sqrt{9 - x^2}$, then what is
$$\lim_{x \to 1} \frac{F(x) - F(1)}{x - 1}$$

equal to:
(a) $-\frac{1}{4\sqrt{2}}$ (b) $\frac{1}{8}$ (c) $-\frac{1}{2\sqrt{2}}$ (d) $\frac{1}{2\sqrt{2}}$
95. What is $\frac{d^2x}{dy^2}$ equal to:
(a) $-\left(\frac{d^2y}{dx}\right)^{-1}\left(\frac{dy}{dx}\right)^{-3}$ (b) $\left(\frac{d^2y}{dx}\right)^{-1}\left(\frac{dy}{dx}\right)^{-3}$ (c) $-\left(\frac{d^2y}{dx^2}\right)^{-1}\left(\frac{dy}{dx}\right)^{-3}$ (d) $\left(\frac{d^2y}{dx^2}\right)^{-1}$
96. Let

	$f(x):\begin{cases} x, & x \text{ is rational} \\ 0, & x \text{ is irrational} \end{cases}$		
	and		
	$g(x): \begin{cases} 0, & x \text{ is rational} \\ 0, & x \text{ is rational} \end{cases}$		
	$\begin{bmatrix} x, & x \text{ is irrational} \end{bmatrix}$		
	If $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$, then $(f - g)$ is :		
	(a) one-one and into (b) neither one-one nor onto		
	(c) many-one and onto (d) one-one and onto		
97.	What is the length of the longest interval in which the function:		
	$f(x) = 3\sin x - 4\sin^3 x$		
	is increasing?		
	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{2}$ (d) π		
98.	If $xdy = y (dx + ydy)$; $y(1) = 1$ and $y(x) > 0$, then what is y (-3) equal to :		
	(a) 3 (b) 2 (c) 1 (d) 0		
99.	What is the maximum value of the function $f(x) = 4\sin^2 x + 1$?		
	(a) 5 (b) 3 (c) 2 (d) 1		
100.	Let $f(x)$ be an indefinite integral of $\sin^2 x$. Consider the following statements:		
	Statement-1 : The function $f(x)$ satisfies $f(x + \pi) = f(x)$ for all real x.		
	Statement-2 : $\sin^2(x + \pi) = \sin^2 x$ for all real <i>x</i> .		
	Which one of the following is correct in respect of the above statements?		
	(a) Both Statement-1 and Statement-2 are correct and Statement-2 is the correct explanation of Statement-1.		
	(b) Both Statement-1 and Statement-2 are correct but Statement-2 is not the correct explanation		
	of Statement-1.		
	(c) Statement-1 is true but Statement-2 is false		
	(d) Statement-1 is false but Statement-2 is true		
101.	What are the degree and order respectively of the differential $y = x \left(\frac{dy}{dx}\right)^2 + \left(\frac{dx}{dy}\right)^2$?		
	(a) 1, 2 (b) 2, 1 (c) 1, 4 (d) 4, 1		
102.	What is the differential equation corresponding to $y^2 - 2ay + x^2 = a^2$ by eliminating <i>a</i> ?		
	(a) $(x^2 - 2y^2)p^2 - 4pxy - x^2 = 0$ (b) $(x^2 - 2y^2)p^2 + 4pxy - x^2 = 0$		

(c)
$$(x^2 + 2y^2)p^2 - 4pxy - x^2 = 0$$
 (d) $(x^2 + 2y^2)p^2 - 4pxy + x^2 = 0$
where $p = \frac{dy}{dx}$
103. What is the general solution of the differential equation?
 $ydx - (x + 2y^2)dy = 0$?
(a) $x = y^2 + cy$ (b) $x = 2cy^2$ (c) $x = 2y^2 + cy$ (d) None of the above
104. Let $f(x + y) = f(x)f(y)$ for all x and y . Then what is $f'(5)$ equal to : [where $f'(x)$ is the
derivative of $f(x)$]
(a) $f(5)f'(0)$ (b) $f(5) - f'(0)$ (c) $f(5)f(0)$ (d) $f(5) + f'(0)$
105. If $f(x)$ and $g(x)$ are continuous functions satisfying $f(x) = f(a - x)$ and $g(x) + g(a - x) = 2$,
then what is $\int_{0}^{a} f(x)g(x)dx$ equal to :
(a) $\int_{0}^{a} g(x)dx$ (b) $\int_{0}^{a} f(x)dx$ (c) $2\int_{0}^{a} f(x)dx$ (d) 0
106. A straight line with direction cosines (0, 1, 0) is :
(a) parallel to x -axis (b) parallel to y -axis
(c) parallel to z -axis (d) equally inclined to all the axes
107. (0, 0, 0), $(a, 0, 0)$, $(0, b, 0)$ and $(0, 0, c)$ are four distinct points. What are the co-ordinates of the
point which is equidistant from the four points?
(a) $\left(\frac{a+b+c}{3}, \frac{a+b+c}{3}, \frac{a+b+c}{3}\right)$ (b) (a, b, c)
(c) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$ (d) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$
108. The points $P(3, 2, 4)$, $Q(4, 5, 2)$, $R(5, 8, 0)$ and $S(2, -1, 6)$ are :
(a) vertices of a rhombus which is not a square

(b) non-coplanar

(c) collinear

(d) coplanar but not collinear

(a) 0 (b)
$$\frac{1}{2}$$
 (c) 1 (d) 2
117. What is $\int_{0}^{\frac{x}{2}} \frac{d\theta}{1+\cos\theta}$ equal to :
(a) $\frac{1}{2}$ (b) 1 (c) $\sqrt{3}$ (d) None of the above
118. What is $\int \frac{dx}{x(x^{2}+1)}$ equal to :
(a) $\frac{1}{2}\ln\left|\frac{x^{2}-1}{x^{2}+1}\right| + c$ (b) $\frac{1}{7}\ln\left|\frac{x^{7}+1}{x^{2}}\right| + c$ (c) $\ln\left|\frac{x^{7}-1}{7x}\right| + c$ (d) $\frac{1}{7}\ln\left|\frac{x^{7}}{x^{2}+1}\right| + c$
119. The function $f: X \to Y$ defined by $f(x) = \cos x$, where $x \in X$, is one-one and onto, if X and Y are respectively equal to :
(a) $[0, \pi]$ and $[-1, 1]$ (b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $[-1, 1]$
(c) $[0, \pi]$ and $[-1, 1]$ (d) $[0, \pi]$ and $[0, 1]$
120. If $f(x) = \frac{x}{x-1}$, then what is $\frac{f(a)}{f(a+1)}$ equal to :
(a) $f\left(-\frac{a}{a+1}\right)$ (b) $f(a^{2})$ (c) $f\left(\frac{1}{a}\right)$ (d) $f(-a)$