

							By:	Er. Vin Mo.: 93	ay Bhabh 3145-330	ra 83
	a.	$2 + \sqrt{2}$	b.	$2 - \sqrt{2}$	c.	$2\sqrt{2}$	d.	$\sqrt{2}$		
For t	he next	three (3) ite	ms that	follow:						
	Cons	ider the func	tion							
	$f(\theta)$	$\theta = 4(\sin^4\theta +$	$\cos^4 \theta$)							
9.	What	t is the maxin	num va	lue of the	function	$f(\theta)$?				
	a.	1	b.	2	c.	3	d.	4		
10.	What	t is the minin	num val	ue of the	function	$f(\theta)$?				
	a.	0	b.	1	c.	2	d.	3		
11.	Cons	ider the follo	owing st	atements:						
	1.	$f(\theta) = 2 h$	as no so	olution.						
	2.	$f(\theta) = \frac{7}{2} 1$	nas a sol	ution.						
	Whic	ch of the abo	ve statei	nents is/a	re correc	et?				
	a.	1 only			b.	2	only			
	c.	Both 1 and	12		d.	Neit	her 1 nor 2			
For t	he next	two (2) item	ns that fo	ollow:						
	Cons	ider the curv	es							
	f(x)	x = x x - 1 a	nd $g(x)$	$=\begin{cases} \frac{3x}{2},\\ 2x, \end{cases}$	$x > 0$ $x \le 0$					
12.	When	re do the cur	ve inters	sect?						
	a.	At (2, 3) of	nly		b.	At (-	-1, -2) only			
	c.	At (2, 3) an	nd (–1, -	-2)	d.	Neitl	her at (2, 3)	nor at (-1, -	-2)	
13.	What	t is the area b	ounded	by the cu	rves?					
	a.	$\frac{17}{6}$ square	units		b.	$\frac{8}{3}$ sq	uare units			
	c.	2 square u	nits		d.	$\frac{1}{3}$ sq	uare units			
For t	he next	two (2) item	ns that fo	ollow:						
	Cons	ider the func	tion							
		$f(x) = \frac{27}{27}$	$\frac{(x^{2/3}-x)}{4}$	<u>;)</u>						
				~		2				_

14. How many solutions does the function $f(x) = 1$ have? a. One b. Two c. Three d. Four 15. How many solutions does the function $f(x) = -1$ have? a. One b. Two c. Three d. Four For the next two (2) items that follow: Consider the functions $f(x) = xg(x)$ and $g(x) = \left[\frac{1}{x}\right]$ Where [J] is the greatest integer function											
a. One b. Two c. Three d. Four 15. How many solutions does the function $f(x) = -1$ have? a. One b. Two c. Three d. Four For the next two (2) items that follow: Consider the functions $f(x) = xg(x)$ and $g(x) = \left[\frac{1}{x}\right]$ Where [1] is the greatest integer function											
15. How many solutions does the function $f(x) = -1$ have? a. One b. Two c. Three d. Four For the next two (2) items that follow: Consider the functions $f(x) = xg(x)$ and $g(x) = \left[\frac{1}{x}\right]$ Where L1 is the greatest integer function											
a. One b. Two c. Three d. Four For the next two (2) items that follow: Consider the functions $f(x) = xg(x)$ and $g(x) = \left[\frac{1}{x}\right]$ Where [1] is the greatest integer function											
For the next two (2) items that follow: Consider the functions $f(x) = xg(x)$ and $g(x) = \left[\frac{1}{x}\right]$ Where [1] is the greatest integer function											
Consider the functions $f(x) = xg(x)$ and $g(x) = \left[\frac{1}{x}\right]$ Where [1] is the greatest integer function											
$f(x) = xg(x) \text{ and } g(x) = \left[\frac{1}{x}\right]$ Where [1] is the greatest integer function											
Where [·] is the greatest integer function.											
where [·] is the greatest integer function.											
16. What is $\int_{\frac{1}{3}}^{\frac{1}{2}} g(x) dx$ equal to?											
a. $\frac{1}{6}$ b. $\frac{1}{3}$ c. $\frac{5}{18}$ d. $\frac{5}{36}$											
17. What is $\int_{\frac{1}{3}}^{1} f(x) dx$ equal to?											
a. $\frac{37}{72}$ b. $\frac{2}{3}$ c. $\frac{17}{72}$ d. $\frac{37}{144}$											
For the next five (5) items that follow:											
Consider the function											
$f(x) = x-1 + x^2$											
where $x \in \Box$.											
18. Which one of the following statements is correct?											
a. $f(x)$ is continuous but not differentiable at $x = 0$											
b. $f(x)$ is continuous but not differentiable at $x = 1$											
c. $f(x)$ is differentiable at $x = 1$											
d. $f(x)$ is not differentiable at $x = 0$ and $x = 1$.											
19. Which one of the following statements is correct?											
a. $f(x)$ is increasing in $\left(-\infty, \frac{1}{2}\right)$ and decreasing in $\left(\frac{1}{2}, \infty\right)$											
b. $f(x)$ is decreasing in $\left(-\infty, \frac{1}{2}\right)$ and increasing in $\left(\frac{1}{2}, \infty\right)$											
3											

By: Er. Vinay Bhabhra
Mo.: 93145-33083

 c.

$$f(x)$$
 is increasing in $(-\infty, 1)$ and decreasing in $(1, \infty)$

 d.
 $f(x)$ is decreasing in $(-\infty, 1)$ and increasing in $(1, \infty)$

 20.
 Which one of the following statements is correct?

 a.
 $f(x)$ has local minima at more than one point in $(-\infty, \infty)$

 b.
 $f(x)$ has local minimum at one point only in $(-\infty, \infty)$

 c.
 $f(x)$ has local minimum at one point only in $(-\infty, \infty)$

 d.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 e.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 d.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 d.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 e.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 d.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 e.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 e.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 e.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 e.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 e.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 e.
 $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

 e.
 $f(x)$ and $x=1?$

24.	What	is $a_{n-1} - a_{n-4}$ e	equal to	?								
	a.	-1	b.	0	c.	1	d.	2				
For the	e next	two (2) items	that fol	llow:								
	Consi	der the equati	on $x+ $	$y \models 2y$.								
25.	Which	n of the follow	ving sta	tements are no	ot corre	ect?						
	1.	y as a function	on of x	is not defined	for all	real <i>x</i> .						
	2.	y as a function	on of x	is not continu	ous at <i>x</i>	c = 0						
	3.	y as a function	on of x	is differentiab	le for a	ll <i>x</i> .						
	Select	the correct an	nswer u	ising the code	given b	below:						
	a.	1 and 2 only			b.	2 and 3 only						
	c.	1 and 3 only			d.	1, 2 and 3						
26.	What	What is the derivative of <i>y</i> as a function of <i>x</i> with respect to <i>x</i> for $x < 0$?										
	a.	2	b.	1	c.	$\frac{1}{2}$	d.	$\frac{1}{3}$				
For th	e next	two (2) items	that fol	llow:								
	Consider the lines											
	y = 3x	x, $y = 6x$ and	d y = 9									
27.	What	is the area of	the tria	ngle formed b	y these	lines?						
	a.	$\frac{27}{4}$ square u	nits		b.	$\frac{27}{2}$ square up	nits					
	c.	$\frac{19}{4}$ square un	nits		d.	$\frac{19}{2}$ square un	nits					
28.	The co	entroid of the	triangle	e is at which o	ne of th	ne following p	oints?					
	a.	(3,6)	b.	$\left(\frac{3}{2},6\right)$	c.	(3,3)	d.	$\left(\frac{3}{2},9\right)$				
For th	e next	two (2) items	that fol	llow:								
	Consi	der the function	on									
	f(x)	$=(x-1)^2(x+$	1)(x-2)	$(2)^{3}$								
29.	What	is the number	of poir	nts of local mi	nima o	f the function	f(x)?					
	a.	None	b.	One	c.	Two	d.	Three				
30.	What	is the number	of poin	nts of local ma	axima o	of the function	f(x)	2				
	1											
				\geq	5	\sum						

							By:	Er. Vina Mo.: 93	y Bhabhra 145-33083
	a.	None	b.	One	c.	Two	d.	Three	
31.	Let	f(x) and $g(x)$	c) be t	wice differen	tiable f	functions or	n [0, 2] satisfying	f''(x) = g''(x) ,
	f '(1)	=4, g'(1)=0	f(2)	=3 and $g(2)$	= 9. T	hen what is	f(x)-	g(x) at $x = 4$	4 equal to?
	a.	-10	b.	-6	c.	-4	d.	2	
For th	ne next	two (2) items	s that fo	ollow:					
	Cons	ider the curve	es						
	y = z	x - 1 and x =	= 2						
32.	What	t is/are the poi	int(s) of	f intersection	of the c	curves?			
	a.	(-2, 3) only			b.	(2, 1) only	7		
	c.	(-2, 3) and	(2, 1)		d.	Neither (-	-2, 3) n	or (2, 1)	
33.	What	t is the area of	the reg	gion bounded	by the	curves and <i>x</i>	-axis?		
	a.	3 square uni	its		b.	4 square u	inits		
	c.	5 square uni	its		d.	6 square u	inits		
For th	ne next	two (2) items	s that fo	ollow:					
	Cons	ider the funct	ion						
	f(x)	$= \begin{vmatrix} x^3 & \sin x \\ 6 & -1 \\ p & p^2 \end{vmatrix}$	$ \begin{array}{c} \cos x \\ 0 \\ p^3 \end{array} $						
	wher	e <i>p</i> is a consta	ant.						
34.	What	t is the value of	of $f'(0)$)?					
	a.	p^3	b.	$3p^3$	c.	$6p^3$	d.	$-6p^{3}$	
35.	What	t is the value of	of p for	which $f''(0)$) = 0?				
	a.	$-\frac{1}{6}$ or 0	b.	-1 or o	c.	$-\frac{1}{6}$ or 1	d.	-1 or 1	
For th	ne next	two (2) items	s that fo	ollow:					
	Cons	ider a triangle	e ABC i	n which					
	cos A	$A + \cos B + \cos B$	$C = \sqrt{3}$	$\frac{1}{3}\sin\frac{\pi}{3}$					
36.	What	t is the value of	of $\sin\frac{A}{2}$	$\frac{1}{2}\sin\frac{B}{2}\sin\frac{C}{2}$?				
				\geq	6	Z			

By: Er. Vinay Bhabhra										
				1		1		<u>No.: 93145-33083</u>		
	a.	$\frac{1}{2}$	b.	$\frac{1}{4}$	c.	$\frac{1}{8}$	d.	$\frac{1}{16}$		
37.	What	is the value of	$f \cos\left(\frac{2}{3}\right)$	$\left(\frac{A+B}{2}\right)\cos\left(\frac{B}{A+B}\right)$	$\left(\frac{+C}{2}\right)$ co	$\cos\left(\frac{C+A}{2}\right)?$				
	a.	$\frac{1}{4}$	b.	$\frac{1}{2}$	c.	$\frac{1}{16}$	d.	None of the above		
For the	e next (two (2) items	that fol	low:						
	Given	that $\tan \alpha$ and	l tan β a	re the roots of	f the eq	uation $x^2 + b$	bx + c =	0 with $b \neq 0$.		
38.	8. What is $tan(\alpha + \beta)$ equal to?									
	a.	b(c-1)	b.	<i>c</i> (<i>b</i> -1)	c.	$c(b-1)^{-1}$	d.	$b(c-1)^{-1}$		
39.	What	is $\sin(\alpha + \beta)$	$\sec \alpha$ se	$c\beta$ equal to?						
	a.	b	b.	-b	c.	c	d.	c		
For the	e next 1	two (2) items	that fol	low:						
	Consid	der the two ci	rcles							
	(x-1)	$v^{2} + (v - 3)^{2} =$	r^2 and	$x^{2} + y^{2} - 8x +$	-2v+8	=0				
40	What	is the distance	e hetwe	en the centre	of the t	wo circles?				
-0.	o nat	5 unite	h	6 unite		8 units	d	10 unite		
41	a. If the	oirolog interso	U.	o distinct noi	u. nta tha	o units	u.	for units		
41.	II the				nts, the					
D 1	а.	r = 1	b.	1 < r < 2	с.	r=2	d.	2 < r < 8		
For the	e next f	two (2) items	that fol	low:						
	Consi	der the two lu	nes							
	x + y	+1=0 and $3x$	x+2y+	1 = 0						
42.	What and pa	is the equation the second sec	on of th is?	e line passing	g throug	gh the point	of inter	rsection of the given lines		
	a.	y + 1 = 0	b.	y - 1 = 0	c.	y - 2 = 0	d.	y + 2 = 0		
43.	What	is the equation	on of th	e line passing	g throug	gh the point	of inter	section of the given lines		
	and pa	arallel to y-axi	is?							
	a.	x + 1 = 0	b.	x - 1 = 0	c.	x - 2 = 0	d.	x + 2 = 0		
For the	e next (two (2) items	that fol	low:						
	Consid	der the equation	on							
	$k \sin x$	$x + \cos 2x = 2k$	z−7							
					7	13				

							By:	Er. Vinay Bhab	hra
44.	If the	e equation pos	ssesses	solution, then	what i	s the minim	um valu	e of k?	005
	a.	1	b.	2	c.	4	d.	6	
45.	If the	e equation pos	ssesses	solution, then	n what i	s the maxim	num valu	ue of k?	
	a.	1	b.	2	c.	4	d.	6	
For th	ne next	t two (2) item	s that f	ollow:					
	Cons	sider the funct	tion						
	f(x)	$0 = \frac{a^{[x]+x} - 1}{[x]+x}$							
	wher	e [·] denotes t	the grea	atest integer f	unction				
46.	Wha	t is $\lim_{x \to 0^+} f(x)$	equal t	o?					
	a.	1	b.	In a	c.	$1 - a^{-1}$	d.	Limit does not exis	st
47.	Wha	t is $\lim_{x\to 0^-} f(x)$	equal t	:0?					
	a.	1	b.	In <i>a</i>	c.	$1 - a^{-1}$	d.	Limit does not exis	st
For th	ne next	t two (2) item	s that f	ollow:					
	Let z	z_1 , z_2 and z_3 be	non-ze	ero complex n	numbers	s satisfying	$z^2=i\overline{z},$	where $i = \sqrt{-1}$.	
48.	Wha	t is $z_1 + z_2 + z_3$	₃ equal	l to?					
	a.	i	b.	-i	c.	0	d.	1	
49.	Cons	sider the follo	wing st	tatements:					
	1.	$z_1 z_2 z_3$ is pu	rely im	naginary					
	2.	$z_1 z_2 + z_2 z_3 -$	$+ z_3 z_1$ is	s purely real					
	Whic	ch of the abov	e state	ments is/are c	orrect?				
	a.	1 only			b.	2 only			
	c.	Both 1 and	2		d.	Neither 1	nor 2		
For th	ne next	t two (2) item	s that f	ollow:					
	Give	n that $\log_x y$	$\log_z x$	x, $\log_y z$ are i	n GP, 2	xyz = 64 and	$1x^3, y^3, z$	z^3 are in AP.	
50.	Whic	ch one of the	followi	ng is correct?					
	<i>x</i> , <i>y</i> a	and z are							
	a.	in AP only			b.	in GP onl	ly		
	c.	in both AP	and GI	D	d.	neither in	AP nor	in GP	
51.	Whic	ch one of the t	followi	ng is correct?					
				\geq	8				

By: Er. Vinay Bhabhra Mo.: 93145-33083

	<i>xy</i> , <i>yz</i> and <i>zx</i> are										
	a. in AP only	b.	in GP only								
	c. in both AP and GP	d.	neither in A	P nor i	n GP						
For th	he next two (2) items that follow:										
	Let z be a complex number satisfying										
	$\left \frac{z-4}{z-8}\right = 1$ and $\left \frac{z}{z-2}\right = \frac{3}{2}$										
52.	What is $ z $ equal to?										
	a. 6 b. 12	с.	18	d.	36						
53.	What is $\left \frac{z-6}{z+6}\right $ equal to?										
	a. 3 b. 2	c.	1	d.	0						
For th	he next two (2) items that follow:										
	A function $f(x)$ is defined as follows:										
	$x + \pi$ for $x \in [-\pi]$,0)									
	$f(x) = \begin{cases} \pi \cos x & \text{for} x \in \left[0, \frac{\pi}{2}\right] \end{cases}$	$\left[\frac{\pi}{2}\right]$									
	$\left(\left(x-\frac{\pi}{2}\right)^2 \text{for} x \in \left(\frac{\pi}{2}\right),$	π									
54.	Consider the following statements?										
	1. The function $f(x)$ is continuo	us at $x =$	0.								
	2. The function $f(x)$ is continuo	us at $x =$	$\frac{\pi}{2}$.								
	Which of the above statement is/are c	orrect?									
	a. 1 only	b.	2 only								
	c. Both 1 and 2	d.	Neither 1 no	or 2							
55.	Consider the following statements:										
	1. The function $f(x)$ is different	iable at	x=0.								
	2. The function $f(x)$ is different	iable at x	$c=\frac{\pi}{2}$.								
	Which of the above statements is/are	correct?									
		9	77								

							By: E	Er. Vinay Bhabhra Mo.: 93145-33083
	a.	1 only			b.	2 only	-	
	c.	Both 1 and 2	2		d.	Neither 1 1	nor 2	
For the	ne next	two (2) items	s that fo	ollow:				
	Let a	and β ($\alpha < \beta$) be the	e roots of the	equatio	n $x^2 + bx + c$	=0, wh	ere $b < 0$ and $c < 0$.
56.	Cons	ider the follow	wing:					
	1.	$\beta < -\alpha$						
	2.	$\beta < \mid \alpha \mid$						
	Whic	h of the above	e is/are	correct?				
	a.	1 only			b.	2 only		
	c.	Both 1 and 2	2		d.	Neither 1 1	nor 2	
57.	Cons	ider the follow	wing:					
	1.	$\alpha + \beta + \alpha \beta$	>0					
	2.	$\alpha^2\beta+\beta^2\alpha$	>0					
	Whic	h of the above	e is/are	correct?				
	a.	1 only			b.	2 only		
	c.	Both 1 and 2	2		d.	Neither 1 1	nor 2	
For the	ne next	three (3) item	ns that f	follow:				
	Cons	ider a paralle	logram	whose verti	ces are	A(1, 2), B(4	, y), C(2	x, 6) and $D(3, 5)$ taken in
	order							
58.	What	t is the value of	of AC^2	$-BD^2$?				
	a.	25	b.	30	c.	36	d.	40
59.	What	is the point o	of inters	ection of the	diagona	als?		
	a.	$\left(\frac{7}{2},4\right)$	b.	(3, 4)	c.	$\left(\frac{7}{2},5\right)$	d.	(3, 5)
60.	What	t is the area of	the par	rallelogram?				
	a.	$\frac{7}{2}$ square ur	nits		b.	4 square u	nits	
	c.	$\frac{11}{2}$ square u	nits		d.	7 square u	nits	
For the	ne next	four (4) items	s that fo	ollow:				
	Let j	$f:\Box \to \Box$ be	a functi	on such that				
					10	77		

								Mo.: 9	3145-33	8083
	f(x)	$= x^3 + x^2 f'($	(1) + xf''	f(2) + f'''(3)						
	for x	\in .								
61.	What	is $f(1)$ equa	al to?							
	a.	-2	b.	-1	с.	0	d.	4		
62.	What	is $f'(1)$ equ	al to?							
	a.	-6	b.	-5	c.	1	d.	0		
63.	What	is f'''(10) e	equal to	?						
	a.	1	b.	5	c.	6	d.	8		
64.	Consi	ider the follo	wing:							
	1.	f(2) = f(1)	()-f(0))						
	2.	f''(2) - 2j	f'(1) = 1	2						
	Whic	h of the abov	ve is/are	correct?						
	a.	1 only			b.	2 only				
	c.	Both 1 and	2		d.	Neither	l nor 2			
For th	e next	three (3) iter	ms that	follow:						
	A pla	ne P passes	through	n the line of i	intersec	tion of the	planes 2	2x - y + 3z	=2, x+y	-z = 1
	and th	ne point (1, 0), 1).							
65.	What	are the direc	ction rat	ios of the line	e of inte	rsection of	the give	n planes?		
	a.	$\langle 2, -5, -3 \rangle$	\rangle		b.	$\langle 1, -5, -$	$-3\rangle$			
	c.	$\langle 2, 5, 3 \rangle$			d.	$\langle 1, 3, 5 \rangle$				
66.	What	is the equation	ion of th	e plane <i>P</i> ?						
	a.	2x+5y-2	2 = 0		b.	5x+2y-	-5 = 0			
	c.	x + z - 2 =	0		d.	2x-y-	2z = 0			
67.	If the	plane P touc	ches the	sphere $x^2 + \frac{1}{2}$	$y^2 + z^2 =$	$=r^2$, then v	vhat is <i>r</i>	equal to?		
	a.	$\frac{2}{\sqrt{29}}$	b.	$\frac{4}{\sqrt{29}}$	c.	$\frac{5}{\sqrt{29}}$	d.	1		
For th	e next	two (2) item	is that fo	ollow:						
	Consi	ider the func	tion							
	f(x)	$= x^2 - 5x + 6$	5							
					11	77				

What is f'(4) equal to? 68. a. -4 b. -32 3 d. c. 69. What is f''(2.5) equal to? -3b. -20 d. 2 a. c. For the next two (2) items that follow: Let f(x) be the greatest integer function and g(x) be the modulus function. What is $(g \circ f)\left(-\frac{5}{3}\right) - (f \circ g)\left(-\frac{5}{3}\right)$ equal to? 70. -1 b. 0 1 d. 2 a. c. What is $(f \circ f) \left(-\frac{9}{5}\right) + (g \circ g) \left(-2\right)$ equal to? 71. -1 b. 0 2 c. 1 d. a. For the next two(2) items that follow: Consider a circle passing through the origin and the points (a, b) and (-b, -a). 72. On which line does the centre of the circle lie? b. x - y = 0x + y = 0a. d. $x - y = a^2 - b^2$ x + y = a + bc. 73. What is the sum of the square of the intercepts cut off by the circle on the axes? a. $\left(\frac{a^2+b^2}{a^2-b^2}\right)^2$ b. $2\left(\frac{a^2+b^2}{a-b}\right)^2$ c. $4\left(\frac{a^2+b^2}{a-b}\right)^2$ d. None of the above For the next two (2) items that follow: Let \hat{a} , \hat{b} be two units vectors and θ be the angle between them. What is $\cos\left(\frac{\theta}{2}\right)$ equal to? 74. a. $\frac{|\hat{a}-\hat{b}|}{2}$ b. $\frac{|\hat{a}+\hat{b}|}{2}$ c. $\frac{|\hat{a}-\hat{b}|}{4}$ d. $\frac{|\hat{a}+\hat{b}|}{4}$

75. What is $\sin\left(\frac{\theta}{2}\right)$ equal to?

By: Er. Vinay Bhabhra Mo.: 93145-33083 $\frac{|\hat{a}-\hat{b}|}{2}$ b. $\frac{|\hat{a}+\hat{b}|}{2}$ c. $\frac{|\hat{a}-\hat{b}|}{4}$ $|\hat{a}+\hat{b}|$ d. a. Consider the following statements: 76. There exists $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which 1. $\sin^{-1}\left(\frac{1}{3}\right) - \sin^{-1}\left(\frac{1}{5}\right) = \sin^{-1}\left(\frac{2\sqrt{2}(\sqrt{3}-1)}{15}\right)$ 2. Which of the above statements is/are correct? 2 only 1 only b. a. Both 1 and 2 Neither 1 nor 2 c. d. 77. Consider the following statements: $\tan^{-1}x + \tan^{-1}\left(\frac{1}{x}\right) = \pi$ 1. There exist x, $y = \in [-1, 1]$ where $x \neq y$ such that $\sin^{-1} x + \cos^{-1} y = \frac{\pi}{2}$. 2. Which of the above statements is/are correct? b. 2 only 1 only a. Both 1 and 2 d. Neither 1 nor 2 c. 78. What are the order and degree respectively of the differential equation whose solution is $y = cx + c^2 - 3c^{3/2} + 2$, where c is a parameter? 1.2 b. 2, 2 c. 1.3 d. 1,4 a. 79. What is $\int_{-\infty}^{\infty} x \, dx - \int_{-\infty}^{\infty} [x] \, dx$ equal to, where $[\cdot]$ is the greatest integer function? a. 0 b. 1 2 d. 4 c. 80. If $\int_{-2}^{5} f(x) \, dx = 4 \text{ and } \int_{0}^{5} \{1 + f(x)\} \, dx = 7 \text{ then what is } \int_{-2}^{0} f(x) \, dx \text{ equal to}?$ -3 b. 2 3 5 a. d. If $\lim_{x\to 0} \phi(x) = a^2$, where $a \neq 0$, then what is $\lim_{x\to 0} \phi\left(\frac{x}{a}\right)$ equal to? 81. 13

a. 82. W a. 83. If	a What is A is a	$\frac{1}{x^{2}} \lim_{x \to 0} e^{-\frac{1}{x^{2}}} equ$	b. al to? b.	a ⁻²	с.	$-a^2$	d.	-a
82. W a. 83. If	What is C	$\lim_{x \to 0} e^{-\frac{1}{x^2}} equ$	al to? b.					
a. 83. If	A is a) 1 square matr	b.					
83. If	A is a	square matr		1	c.	-1	d.	Limit does not exist
			ix, ther	n what is adj(A	$A^{-1})-(ad)$	$(j A)^{-1}$ equal to	o?	
a.		2 A			b.	Null matrix		
c.	. τ	Unit matrix			d.	None of the a	above	
84. W	Vhat is	the binary e	quivale	ent of the deci	mal nur	mber 0·3125?		
a.	. ().0111	b.	0.1010	c.	0.0101	d.	0.1101
85. L	et R b	e a relation of	on the	set N of natur	al num	bers defined l	oyʻ <i>nR</i> i	$m \Leftrightarrow n$ is a factor of m '.
T	hen w	hich of the fo	ollowin	g is correct?				
a.	. <i>I</i>	R is reflexive	, symm	etric but not t	ransitiv	ve		
b.	. <i>I</i>	R is transitive	e, symn	netric but not	reflexiv	/e		
c.	. 1	R is reflexive	, transi	tive but not sy	mmetri	ic		
d.	. <i>I</i>	R is an equiva	alence	relation				
86. W	Vhat is	$\int_0^{4\pi} \cos x d$	lx equa	l to?				
a.	. ()	b.	2	c.	4	d.	8
87. W	Vhat is	the number	of natu	ral numbers l	ess that	n or equal to	1000 w	hich are neither divisible
by	y 10 n	or 15 nor 255	?					
a.	. 8	360	b.	854	c.	840	d.	824
88. (a	a, 2b)	is the mid-	point	of the line s	egment	joining the	points	(10, -6) and $(k, 4)$. If
a	-2b =	=7, then what	at is the	e value of <i>k</i> ?				
a.	. 2	2	b.	3	c.	4	d.	5
89. C	onside	er the followi	ng stat	ements:			~ .	
1.	. I	f ABC is an e	equilate	eral triangle, t	hen 3ta	$an(A+B) \tan \theta$	C = 1.	
2.	. I	f <i>ABC</i> is a tri	iangle	in which $A = 7$	78°, <i>B</i> =	= 66°, then		
	t	$\tan\left(\frac{A}{2}+C\right)$	< tan A					
If	ABC	is any triang	le, then					
	t	$\tan\left(\frac{A+B}{2}\right)$ s	$ in\left(\frac{C}{2}\right) $	$<\cos\left(\frac{C}{2}\right)$				
					14	K		

By: Er. Vinay Bhabhra Mo.: 93145-33083 Which of the above statements is/are correct? 1 and 2 2 and 3 a. 1 only b. 2 only c. d. If $A = (\cos 12^\circ - \cos 36^\circ)(\sin 96^\circ + \sin 24^\circ)$ and $B = (\sin 60^\circ - \sin 12^\circ)(\cos 48^\circ - \cos 72^\circ)$, then 90. what is $\frac{A}{R}$ equal to? -1 b. 0 1 d. 2 a. c. What is the mean deviation from the mean of the numbers 10, 9, 21, 16, 24? 91. 5.2 b. 5.0 c. 4.5 d. 4.0a. Three dice are thrown simultaneously. What is the probability that the sum on the three faces 92. is at least 5? 17 b. $\frac{53}{54}$ c. $\frac{103}{108}$ d. $\frac{215}{216}$ a. Two independent events A and B have $P(A) = \frac{1}{3}$ and $P(B) = \frac{3}{4}$. What is the probability that 93. exactly one of the two events A or B occurs? b. $\frac{5}{6}$ c. $\frac{5}{12}$ d. $\frac{7}{12}$ a. $\frac{1}{4}$ 94. A coin is tossed three times. What is the probability of getting head and tail alternately? b. $\frac{1}{4}$ c. $\frac{1}{2}$ d. $\frac{3}{4}$ a. $\frac{1}{8}$ If the total number of observations is 20, $\sum x_i = 1000$ and $\sum x_i^2 = 84000$, then what is the 95. variance of the distribution? 1500 b. 1600 c. 1700 d. 1800 a. 96. A card is drawn from a well-shuffled deck of 52 cards. What is the probability that it is queen of spade? b. $\frac{1}{13}$ c. $\frac{1}{4}$ d. $\frac{1}{8}$ $\frac{1}{52}$ a. 97. If two dice are thrown, then what is the probability that the sum on the two faces is greater than or equal to? b. $\frac{5}{6}$ c. $\frac{11}{12}$ d. $\frac{35}{36}$ a. 15

By: Er. Vinay Bhabhra Mo.: 93145-33083

									Mo.: 93	3145-3	3083
98.	A cer	tain type of n	nissile ł	nits the target	t with p	robabil	ity $p = 0$	0.3. V	What is the	least nu	mber of
	missi	les should be	fired sc	that there is	at least	an 80%	6 probal	bility	that the tar	rget is hit	t?
	a.	5	b.	6	c.	7		d.	None of	the abov	ve
99.	For t	wo mutually	exclus	sive events A	A and I	B, P(A)) = 0.2	and	$P(\overline{A} \cap B)$	0 = 0.3. V	What is
	P(A	$(A \cup B))$ equ	ual to?								
	a.	$\frac{1}{2}$	b.	$\frac{2}{5}$	c.	$\frac{2}{7}$		d.	$\frac{2}{3}$		
100.	What	is the probab	ility of	5 Sundays in	the mo	nth of]	Decemb	er?			
	a.	$\frac{1}{7}$	b.	$\frac{2}{7}$	c.	$\frac{3}{7}$		d.	None of	the abov	ve
101.	If <i>m</i> i	s the geometr	ic mear	$n \text{ of } \left(\frac{y}{z}\right)^{\log(yz)}$, $\left(\frac{z}{x}\right)^{l}$	og(zx) an	nd $\left(\frac{x}{y}\right)^{lo}$	og(xy) t	hen what is	s the valu	ue of <i>m</i> ?
	a.	1	b.	3	c.	6		d.	9		
102.	A poi	nt is chosen	at rando	om inside a r	ectangle	e meas	uring 6	inche	es by 5 inc	hes. What	at is the
	proba	bility that th	ie rand	omly selecte	d point	t is at	least o	ne ii	nch from	the edge	of the
	rectar	ngle?									
	a.	$\frac{2}{3}$	b.	$\frac{1}{3}$	c.	$\frac{1}{4}$		d.	$\frac{2}{5}$		
103.	The r	nean of the s	eries is	x_1, x_2, \ldots, x_n	x_n is \overline{X}	. If x_2	is repla	iced l	by λ , then	what is t	the new
	mean	?									
	a.	$\overline{X} - x_2 + \lambda$			b.	\overline{X} – .	$\frac{x_2 - \lambda}{n}$				
	c.	$\frac{\overline{X} - x_2 + \lambda}{n}$			d.	$n\overline{X}$ -	$\frac{-x_2 + \lambda}{n}$				
104.	For th	ne data									
		3, 5, 1, 6, 5,	9, 5, 2,	8, 6 the mean	n, medi	an and	mode a	re <i>x</i> ,	y and z resp	pectively	. Which
	one of	f the followin	ig is cor	rrect?							
	a.	$x = y \neq z$			b.	$x \neq y$	v = z				
	c.	$x \neq y \neq z$			d.	x = y	v = z				
105.	Consi	der the follow	ving sta	tements in re	spect of	f a histo	ogram:				

By: Er. Vinay Bhabhra Mo.: 93145-33083										
	1.	The total are	ea of th	e rectangles i	in a hist	ogram is equ	al to the	total area bounded by the		
		correspondi	ng freq	uency polygo	on and the	he <i>x</i> -axis.				
	2.	When class	interva	lls are unequa	al in a f	requency dis	tribution	, the area of the rectangle		
		is proportion	nal to tl	he frequency.						
	Whic	h of the above	e staten	nents is/are co	orrect?					
	a.	1 only			b.	2 only				
	c.	Both 1 and 2	2		d.	Neither 1 n	or 2			
106.	A fai	r coin is toss	ed 100	times. What	t is the	probability of	of gettin	g tails an odd number of		
	times	?								
	a.	1	b.	3	c.	<u>1</u>	d.	<u>1</u>		
		2	_	8		4		8		
107.	What	is the numbe	r of wa	ys in which 3	3 holida	y travel ticke	ts are to	be given to 10 employees		
	of an	organization,	if each	employee is	eligible	e for any one	or more	of the tickets?		
100	a.	60	b.	120	c.	500	d.	1000		
108.	If one	e root of the e	quation	l						
	$(l-m)x^2 + lx + 1 = 0$									
	is dou	able the other	and <i>l</i> is	s real, then w	hat is th	e greatest val	lue of <i>m</i>	?		
	a.	$-\frac{9}{8}$	b.	$\frac{9}{8}$	c.	$-\frac{8}{9}$	d.	$\frac{8}{9}$		
109.	What	is the numbe	r of fou	ır-digit decim	al num	bers (<1) in v	which no	digit is repeated?		
	a.	3024	b.	4536	c.	5040	d.	None of the above		
110.	What	is a vector of	unit le	ngth orthogo	nal to b	oth the vector	rs $\hat{i} + \hat{j}$	$+\hat{k}$ and $2\hat{i}+3\hat{j}-\hat{k}$?		
	a.	$\frac{-4\hat{i}+3\hat{j}-\hat{k}}{\sqrt{26}}$			b.	$\frac{-4\hat{i}+3\hat{j}+}{\sqrt{26}}$	\hat{k}			
	c.	$\frac{-3\hat{i}+2\hat{j}-\hat{k}}{\sqrt{14}}$			d.	$\frac{-3\hat{i}+2\hat{j}+}{\sqrt{14}}$	\hat{k}			
111.	If \vec{a}	, \vec{b} and \vec{c} are	e the p	position vector	ors of	the vertices	of an e	equilateral triangle whose		
	ortho	centre is at the	e origir	, then which	one of	the following	is corre	ect?		
	a.	$\vec{a} + \vec{b} + \vec{c} = \vec{0}$)		b.	$\vec{a} + \vec{b} + \vec{c} =$	unit vec	ctor		
	c.	$\vec{a} + \vec{b} = \vec{c}$			d.	$\vec{a} = \vec{b} + \vec{c}$				
112.	What	is the area of	the par	rallelogram h	aving d	iagonals $3\hat{i}$ +	$\hat{j}-2\hat{k}$ a	and $\hat{i} - 3\hat{j} + 4\hat{k}$?		
					17	\mathbf{T}				

				By: Er. Vinay Bhabhra Mo.: 93145-33083								
	a.	$5\sqrt{5}$ square units	b.	$4\sqrt{5}$ square units								
	c.	$5\sqrt{3}$ square units	d.	$15\sqrt{2}$ square units								
113.	Consi	der the following in respect of the	$A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}:$									
	1.	$A^2 = -A$										
	2.	$A^3 = 4A$										
	Which	ch of the above is/are correct?										
	a.	1 only	b.	2 only								
	c.	Both 1 and 2	d.	Neither 1 nor 2								
114.	Which	Which of the following determinants have value zero?										
	1.	41 1 5 79 7 9 29 5 3										
	2.	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$										
	3.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
	Select	Select the correct answer using the code given below:										
	a.	1 and 2 only	b.	2 and 3 only								
	c.	1 and 3 only	d.	1, 2 and 3								
115.	What	What is the acute angle between the lines represented by the equations $y = -\sqrt{3}x - 5 = 0$ and										
	$\sqrt{3}y - x + 6 = 0$?											
	a.	30° b. 45°	c.	60° d. 75°								
116.	The s	The system of linear equations $kx + y + z = 1$, $x + ky + z = 1$ and $x + y + kz = 1$ has a unique										
	solution under which one of the following conditions?											
	a.	$k \neq 1$ and $k \neq -2$	b.	$k \neq 1$ and $k \neq 2$								
	c.	$k \neq -1$ and $k \neq -2$	d.	$k \neq -1$ and $k \neq 2$								
117.	What	What is the number of different messages that can be represented by three 0's and two 1's?										
	18											

Г

						By: E	r. Vinay Bhabhra No.: 93145-33083		
a.	10	b.	9	с.	8	d.	7		
If log	a(ab) = x, the	n what	is $\log_b(ab)$ eq	qual to:	?				
a.	$\frac{1}{x}$	b.	$\frac{x}{x+1}$	c.	$\frac{x}{1-x}$	d.	$\frac{x}{x-1}$		
If									
$y = \log_{10} x + \log_x 10 + \log_x x + \log_{10} 10$									
then v	what is								
$\left(\frac{dy}{dx}\right)$	<i>x</i> =10								
equal	to?								
a.	10	b.	2	c.	1	d.	0		
Suppo	ose ω_1 and α	o_2 are	two distinct o	cube ro	oots of unity	differe	nt from 1. Then what is		
$(\omega_1 - \omega_2)^2$ equal to?									
a.	3	b.	1	c.	-1	d.	-3		
	a. If log a. If $y = loc (\frac{dy}{dx})$ equal a. Suppo $(\omega_1 - a.$	a. 10 If $\log_a (ab) = x$, the a. $\frac{1}{x}$ If $y = \log_{10} x + \log_x 10$ then what is $\left(\frac{dy}{dx}\right)_{x=10}$ equal to? a. 10 Suppose ω_1 and ω_1 $(\omega_1 - \omega_2)^2$ equal to ω_1 a. 3	a. 10 b. If $\log_a (ab) = x$, then what a. $\frac{1}{x}$ b. If $y = \log_{10} x + \log_x 10 + \log_x$ then what is $\left(\frac{dy}{dx}\right)_{x=10}$ equal to? a. 10 b. Suppose ω_1 and ω_2 are $(\omega_1 - \omega_2)^2$ equal to? a. 3 b.	a.10b.9If $\log_a (ab) = x$, then what is $\log_b (ab)$ equalsa. $\frac{1}{x}$ b. $\frac{x}{x+1}$ If $y = \log_{10} x + \log_x 10 + \log_x x + \log_{10} 10$ then what is $\left(\frac{dy}{dx}\right)_{x=10}$ equal to?a.10b.2Suppose ω_1 and ω_2 are two distinct of $(\omega_1 - \omega_2)^2$ equal to?a.3b.1	a.10b.9c.If $\log_a (ab) = x$, then what is $\log_b (ab)$ equal to ab a. $\frac{1}{x}$ b. $\frac{x}{x+1}$ c.If $y = \log_{10} x + \log_x 10 + \log_x x + \log_{10} 10$ then what is $\left(\frac{dy}{dx}\right)_{x=10}$ equal to?a.10b.2c.Suppose ω_1 and ω_2 are two distinct cube rec $(\omega_1 - \omega_2)^2$ equal to?a.3b.1c.	a.10b.9c.8If $\log_a (ab) = x$, then what is $\log_b (ab)$ equal to?a. $\frac{1}{x}$ b. $\frac{x}{x+1}$ c. $\frac{x}{1-x}$ If $y = \log_{10} x + \log_x 10 + \log_x x + \log_{10} 10$ then what is $\left(\frac{dy}{dx}\right)_{x=10}$ equal to?a.10b.2c.1Suppose ω_1 and ω_2 are two distinct cube roots of unity $(\omega_1 - \omega_2)^2$ equal to?a.3b.1c1	By: E a. 10 b. 9 c. 8 d. If $\log_a (ab) = x$, then what is $\log_b (ab)$ equal to? a. $\frac{1}{x}$ b. $\frac{x}{x+1}$ c. $\frac{x}{1-x}$ d. If $y = \log_{10} x + \log_x 10 + \log_x x + \log_{10} 10$ then what is $\left(\frac{dy}{dx}\right)_{x=10}$ equal to? a. 10 b. 2 c. 1 d. Suppose ω_1 and ω_2 are two distinct cube roots of unity difference $(\omega_1 - \omega_2)^2$ equal to? a. 3 b. 1 c1 d.		