							By:	Er. Vinay Bha Mo.: 93145-3	bhra 3083
				NDA Pape	er Sept 2	016 (SET - A)		
1.	Let S	be a set of	all disti	nct numbers	s of the f	form $\frac{p}{q}$, whe	re <i>p</i> , <i>q</i>	\in {1,2,3,4,5,6}. What	at is the
	cardin	ality of the set	S?						
	a.	21	b.	23	с.	32	d.	36	
2.	If c >	a = 0 and $4a + a$	$c{<}2b$, t	hen $ax^2 - bx$	c + c = 0	has a root in wh	nich one	of the following interva	ls?
	а.	(0, 2)	b.	(2, 3)	С.	(3, 4)	d.	(-2, 0)	
3.	If A = correc	$= \{ x \in \mathbf{R} : x^2 + x^2 + x^2 \}$	+6x-7	< 0 and $B = 0$	$= \{x \in \mathbf{R}\}$	$x^{2} + 9x + 14$	> 0} , th	en which of the followi	ng is/are
	2	$A \setminus B = \{x\}$	$= \mathbf{R} \cdot -7$	< r < -2					
	z. Select	The correct an	swer usir	x = 2	ven below				
	a.	1 only	b.	2 only	c.	Both 1 and	l 2 d.	Neither 1 nor 2	
4.	If A i	is a square m	atrix of	order 3 and	det A =	5, then what	is det [($2A)^{-1}$] equal to?	
	a.	1/10	b.	2/5	c.	8/5	d.	1/40	
5.	What	t is $\omega^{100} + \omega^2$	$^{00} + \omega^{300}$	⁰ equal to, w	here ω i	s the cube roo	ot of un	ity?	
	a.	1	b.	3ω	c.	$3\omega^2$	d.	0	
6.	If Re	$e\left(\frac{z-1}{z+1}\right) = 0,$	were z	= x + iy is a	a comple	ex number, th	nen whi	ch one of the follo	wing is
	corre	ct?							
	a.	z=1+i	b.	z = 2	с.	z = 1 - i	d.	<i>z</i> = 1	
7.	What	tis [x y z	$\begin{bmatrix} a & h \\ h & b \\ g & f \end{bmatrix}$	$\begin{bmatrix} g \\ f \\ c \end{bmatrix} equal$	to"				
	a.	[ax+hy+]	gz h+	b+f $g+$	f+c]				
	b.	$\begin{bmatrix} a & h \\ hx & by \\ g & f \end{bmatrix}$	$\begin{bmatrix} g \\ fz \\ c \end{bmatrix}$						
	c.	$\begin{bmatrix} ax + hy + \\ hx + by + \\ gx + fy + \end{bmatrix}$	$\begin{bmatrix} gz \\ fz \\ cz \end{bmatrix}$						
	d.	$\left[ax+hy+\right]$	gz hx-	+by+fz g	gx + fy +	cz]			
					1	7			

Г

		By: Er. Vinay Bhabhra Mo.: 93145-33083
8.	Out of 15 points in a plane, n points are in the same str	raight line. 445 triangles can be formed
	by joining these points. What is the value of <i>n</i> ?	
	a. 3 b. 4 c. 5	d. 6
9.	If $z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^{107} + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{107}$, then what is the image	ginary part of z equal to?
	a. 0 b. $\frac{1}{2}$ c. $\frac{\sqrt{3}}{2}$	d. 1
10.	If both the roots of the equation	
	$x^2 - 2kx + k^2 - 4 = 0$ lie between -3 and 5, then which	one of the following is correct?
	a. $-2 < k < 2$ b. $-5 < k$	<i>x</i> < 3
	c. $-3 < k < 5$ d. $-1 < k$	z < 3
11.	What is the number of distinct solutions of the equat	ion $z^2 + z = 0$ (where z is a complex
	number)?	
	a. One b. Two c. Three	d. Five
12.	How many geometric progressions is/are possible conterms?	aining 27, 8 and 12 as three of its/their
	a. One b. Two c. Four	d. Infinitely many
13.	Let R be a relation from $A = \{1, 2, 3, 4\}$ to $B = \{1, 3, 4\}$, 5} such that $R = (a, b)$: $a < b$, where
	$a \in A$ and $b \in B$). What is RoR^{-1} equal to?	
	a. $\{(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)\}$	
	b. $\{(3, 1), (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)\}$	
	c. $\{(3, 3), (3, 5), (5, 3), (5, 5)\}$	
	d. $\{(3, 3), (3, 4), (4, 5)\}$	
14.	A five-digit number divisible by 3 is to be formed us	sing the digits 0, 1, 2, 3 and 4 without
	repetition of digits. What is the number of ways this ca	in be done?
	a. 96 b. 48	
	c. 32 d. No nu	mber can be formed
15.	What is ${}^{47}C_4 + {}^{51}C_3 + \sum_{j=2}^{3} {}^{52-j}C_3$ equal to?	
	a. ${}^{52}C_4$ b. ${}^{51}C_5$ c. ${}^{53}C_4$	d. ${}^{52}C_5$
Cons	der the following for the next three (03) items that fo	bllow:
	Let a, x, y, z, b be in AP, where $x + y + z = 15$.	Let a, p, q, r, b be in HP, where
	$p^{-1} + q^{-1} + r^{-1} = 5/3$.	

							By: E	r. Vinay Bhabhra No.: 93145-33083
16.	What	is the value of	f ab?					
	a.	10	b.	9	c.	8	d.	6
17.	What	is the value of	of xyz?					
	a.	120	b.	105	c.	90	d.	Cannot be determined
18.	What	is the value o	f pqr?					
	a.	35/243	b.	81/35	c.	243/35	d.	Cannot be determined
Cons	ider th	e following f	or the r	next two (02)	items (that follow:		
The s	ixth ter	m of an AP is	s 2 and	its common di	ifferenc	ce is greater th	nan 1.	
19.	What	is the comm	on diff	erence of the	AP so	that the proc	duct of	the first, fourth and fifth
	terms	is greatest?						
	a.	8/5	b.	9/5	c.	2	d.	11/5
20.	What	is the first to	erm of	the AP so th	at the	product of th	ne first,	fourth and fifth terms is
	greate	est?						
	a.	-4	b.	-6	c.	-8	d.	-10
Cons	ider th	e following f	or the r	next two (02)	items (that follow:		
			x	x+1 $2x$	3 <i>x</i>			
	Let a	$ax^3 + bx^2 + cx + bx^2$	-d = 2t	x+3 $x+1$	x	, then		
			2	-x 3x+4	5x - 1			
21.	What	is the value of	of <i>c</i> ?					
	a.	-1	b.	34	c.	35	d.	50
22.	What	is the value o	of $a+b$	+c+d?				
	a.	62	b.	63	c.	65	d.	68
Cons	ider th	e following f	or the r	next two (02)	items (that follow:		
The i	nterior	angles of a p	olygon	of n sides are	e in AF	P. The smalle	st angle	e is 120° and the common
differ	rence is	5°.						
23.	How	many possible	e values	s can n have?				
	a.	One	b.	Two	c.	Three	d.	Infinitely many
24.	What	is the largest	interior	angle of the p	polygo	n?		
	a.	160° only			b.	195° only		
	c.	Either 160°	or 195°		d.	Neither 160	° nor 19	95°
25.	If <i>m</i> =	$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and }$	$n = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$, then we	hat is t	he value of th	e deter	minant of $m\cos\theta - n\sin\theta$
	?							
	a.	-1	b.	0	c.	1	d.	2
					3	Z		

 $\cos x - \sin x = 0$ 0, then which of the following are correct? If $f(x) = |\sin x|$ 26. $\cos x$ 0 0 1 $f(\theta) \times f(\phi) = f(\theta + \phi)$. 1. 2. The value of the determinants of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of f(x) is an even function. Select the correct answer using the code given below: 1 and 2 only 2 and 3 only b. a. 1 and 3 only d. 1. 2 and 3 c. 27. Which of the following are correct in respect of the system of equations x + y + z = 8, x - y + 2z = 6 and 3x - y + 5z = k? They have no solution, if k = 15. 1. 2. They have infinitely many solutions, if k = 20. 3. They have unique solution, if k = 25. Select the correct answer using the code given below: 1 and 2 only b. 2 and 3 only a. 1 and 3 only d. 1, 2 and 3 c. If $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$, then which of the following is/are correct? 28. $AB(A^{-1}B^{-1})$ is a unit matrix. 1. $(AB)^{-1} = A^{-1}B^{-1}$ 2. Select the correct answer using the code given below: 2 only c. Both 1 and 2 d. 1 only b. Neither 1 nor 2 a. If $x^{ln\left(\frac{y}{z}\right)} \Box y^{ln(xz)^2} \Box z^{ln\left(\frac{x}{y}\right)} = y^{4lny}$ for any x > 1, y > 1 and z > 1, then which one of the following 29. is correct? *ln* y is the GM of *ln x*, *ln x*, *ln x* and *ln z* a. b. *ln* y is the AM of *ln x*, *ln x*, *ln x* and *ln z ln* y is the HM of *ln* x, *ln* x, *ln* x and *ln* z c. *ln y* is the AM of *ln x*, *ln x*, *ln z* and *ln z* d. If the number 235 in decimal system is converted into binary system, then what is the 30 resulting number? $(11110011)_2$ b. $(11101011)_2$ a. $(11110101)_2$ $(11011011)_2$ d. c. 4

Consider the following for the next two (02) items that follow: Let α and β be the roots of the equation $x^{2} - (1 - 2a^{2})x + (1 - 2a^{2}) = 0.$ 31. Under what condition does the above equation have real roots? a. $a^2 < \frac{1}{2}$ b. $a^2 > \frac{1}{2}$ c. $a^2 \le \frac{1}{2}$ d. $a^2 \ge \frac{1}{2}$ Under what condition is $\frac{1}{\alpha^2} + \frac{1}{\beta^2} < 1?$ 32. a. $a^2 < \frac{1}{2}$ b. $a^2 > \frac{1}{2}$ c. $a^2 > 1$ d. $a^2 \in \left(\frac{1}{3}, \frac{1}{2}\right)$ only What is $\sqrt{\frac{1+\omega^2}{1+\omega}}$ equal to, where ω is the cube root of unity? 33. ω^2 d. i ω , where $i = \sqrt{-1}$ 1 b. C. a. ω In an examination, 70% students passed in Physics, 80% students passed in Chemistry, 75% 34. students passed in Mathematics and 85% students passed in Biology, and x% students failed in all the four subjects. What is the minimum value of x? a. 10 b. 12 c. 15 d. None of these Consider the following for the next two (02) items that follow: For the system of linear equations 2x+3y+5z=9, 7x+3y-2z=8 and $2x+3y+\lambda z=\mu$. 35. Under what condition does the above system of equations have infinitely many solutions? $\lambda = 5$ and $\mu \neq 9$ $\lambda = 5$ and $\mu = 9$ a. b. $\lambda = 9$ and $\mu \neq 5$ $\lambda = 9$ and $\mu = 5$ d. c. Under what condition does the above system of equations have unique solutions? 36. a. $\lambda = 5$ and $\mu = 9$ b. $\lambda \neq 5$ and $\mu = 7$ only $\lambda \neq 5$ and μ has any real value d. λ has any real value and $\mu \neq 9$ c. What is the number of odd integers between 1000 and 9999 with no digit repeated? 37. 2100 b. 2120 c. 2240 d. 3331 a. 38. What is the greatest value of the positive integer n satisfying the condition $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} < 2 - \frac{1}{1000}?$ h. 9 10 d. 11 c. Consider the following for the next two (02) items that follow: $2x^2 + 3x - \alpha = 0$ has roots -2 and β while the equation $x^2 - 3mx + 2m^2 = 0$ has roots positive, where $\alpha > 0$ and $\beta > 0$.

By: Er. Vinay Bhabhra Mo.: 93145-33083 39. What is the value of α ? b. 1 2 d. a. 1/2c. 4 If β , 2, 2*m* are in GP, then what is the value of $\beta \sqrt{m}$? 40. b. 2 a. 1 4 c. d. 6 $\sin A + 2\sin 2A + \sin 3A$ is equal to which of the following? 41. $4\sin 2A\cos^2\left(\frac{A}{2}\right)$ 1. $2\sin 2A\left(\sin\frac{A}{2}+\cos\frac{A}{2}\right)^2$ 2. $8\sin A\cos A\cos^2\left(\frac{A}{2}\right)$ 3. Select the correct answer using the code given below: 1 and 2 only 2 and 3 only a. b. 1 and 3 only d. 1, 2 and 3 c. If $x = \sin 70^\circ \cdot \sin 50^\circ$ and $y = \cos 60^\circ \cdot \cos 80^\circ$, then what is xy equal to? 42. c. 1/4d. 1/16b. 1/81/2a. If $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 + \sin \theta_4 = 4$, then what is the value of $\cos \theta_1 + \cos \theta_2 + \cos \theta_3 + \cos \theta_4$? 43. 0 b. 1 c. 2 d. a. What is the value of $\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)\left(1+\cos\frac{7\pi}{8}\right)?$ 44. b. $\frac{1}{2} + \frac{1}{2\sqrt{2}}$ c. $\frac{1}{2} - \frac{1}{2\sqrt{2}}$ d. $\frac{1}{8}$ a. $\frac{1}{2}$ 45. If $x\cos\theta + y\sin\theta = z$, then what is the value of $(x\sin\theta - y\cos\theta)^2$? $x^{2} + y^{2} - z^{2}$ b. $x^2 - y^2 - z^2$ a. $x^2 - v^2 + z^2$ d. $x^2 + y^2 + z^2$ С What is the value of $\cos(2\cos^{-1}0.8)$? 46. a. 0.81 b. 0.56 c. 0.48 d. 0.28 The top of a hill when observed from the top and bottom of a building of height h is at angles 47. of elevation *p* and *q* respectively. What is the height of the hill? $h \cot q$ $h \cot q$ b. a. $\cot q - \cot p$ $\cot p - \cot q$ $2h \tan p$ $2h \tan q$ d. c. $\tan p - \tan q$ $\tan q - \tan p$ 6

						MO.: 93145-33083
48.	If sin	$18^{\circ} = \frac{\sqrt{5}-1}{4},$	then wl	hat is the va	lue of sir	n 81°?
	a.	$\frac{\sqrt{3+\sqrt{5}}+\sqrt{3}}{4}$	$\sqrt{5-\sqrt{5}}$		b.	$\frac{\sqrt{3+\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$
	c.	$\frac{\sqrt{3-\sqrt{5}}+\sqrt{3-\sqrt{5}}}{4}$	$\sqrt{5-\sqrt{5}}$		d.	$\frac{\sqrt{3+\sqrt{5}}-\sqrt{5-\sqrt{5}}}{4}$
49.	A mo	ving boat is o	observed	l from the to	op of a cl	iff of 150 m height. The angle of depression of
	the be	oat changes f	from 60°	o to 45° in 2	2 minutes	s. What is the speed of the boat in metres per
	hour?	,				
	a.	$\frac{4500}{\sqrt{3}}$			b.	$\frac{4500(\sqrt{3}-1)}{\sqrt{3}}$
	c.	4500√3			d.	$\frac{4500(\sqrt{3}+1)}{\sqrt{3}}$
50.	What	is $\frac{1 - \tan 2^\circ \alpha}{\tan 152^\circ - \alpha}$	$\frac{\cot 62^{\circ}}{\cot 88^{\circ}}$	equal to?		
	a.	$\sqrt{3}$	b.	$-\sqrt{3}$	с.	$\sqrt{2} - 1$ d. $1 - \sqrt{2}$
51.	An e	quilateral tria	angle h	as one ver	tex at (C), 0) and another at (3, $\sqrt{3}$). What are the
	coord	inates of the	third ve	rtex?		
	a.	$(0, 2\sqrt{3})$ or	ıly		b.	$(3, -\sqrt{3})$ only
	c.	$(0, 2\sqrt{3})$ or	$(3, -\sqrt{2})$	3)	d.	Neither (0, $2\sqrt{3}$) nor (3, $-\sqrt{3}$)
52.	What	is the equation	on of the	e right bisec	tor of the	e line segment joining (1, 1) and (2, 3)?
	a.	2x + 4y - 12	1 = 0		b.	2x - 4y - 5 = 0
	c.	2x - 4y - 12	1 = 0		d.	x - y + 1 = 0
53.	What	is the radius	s of the	circle pass	sing throu	ugh the point (2, 4) and having centre at the
	inters	ection of the	lines x	-y = 4 and	2x+3y-	+7 = 0?
	a.	3 units	b.	5 units	c.	$3\sqrt{3}$ units d. $5\sqrt{2}$ units
54.	What	is the equa	tion of	the hyper	bola hav	ving latus rectum and eccentrity 8 and $\frac{3}{\sqrt{5}}$
	respe	ctively?				
	a.	$\frac{x^2}{25} - \frac{y^2}{20} = 1$			b.	$\frac{x^2}{40} - \frac{y^2}{20} = 1$
	c.	$\frac{x^2}{40} - \frac{y^2}{30} = 1$			d.	$\frac{x^2}{30} - \frac{y^2}{25} = 1$
				\geq	7	13

								10.1. 331-	-3-33003
55.	If the correc	point (<i>a</i> , <i>a</i>) t?	lies be	etween the lin	nes $ x $	y = 2, then	which	one of the	following is
				_				1	
	a.	<i>a</i> <2	b.	$ a < \sqrt{2}$	с.	<i>a</i> <1	d.	$ a < \frac{1}{\sqrt{2}}$	
56.	What	is the equation	n of the	e straight line	which	passed throug	h the p	oint of inters	section of the
	straigh	nt lines $x+2$	2y = 5	and $3x+7y$	v = 17 a	and is perpe	endicul	ar to the	straight line
	3x + 4	y = 10?							
	a.	4x + 3y + 2 =	= 0		b.	4x - y + 2 = 0	0		
	c.	4x - 3y - 2 =	= 0		d.	4x - 3y + 2 =	= 0		
57.	If (<i>a</i> ,	b) is at unit	t distar	nce from the	line 8	x + 6y + 1 = 0	, then	which of t	he following
	condit	ions are corre	ct?						
	1.	3a - 4b - 4 =	0						
	2.	8a + 6b + 11 =	=0						
	3.	8a + 6b - 9 =	0						
	Select	the correct an	iswer u	sing the code	given b	below:			
	a.	1 and 2 only			b.	2 and 3 only			
	c.	1 and 3 only			d.	1, 2 and 3			
58.	If the	ellipse $9x^2 + 1$	$16y^2 =$	144 intersects	s the lin	x + 4y = 1	2, then	what is the	length of the
	chord	so formed?							
	a.	5 units	b.	6 units	c.	8 units	d.	10 units	
59.	A stra	ight line cuts	off an	intercept of 2	2 units	on the positiv	ve direc	tion of <i>x</i> -ax	is and passes
	throug	sh the point (-	3, 5). V	What is the fo	ot of the	e perpendicula	ar draw	n from the p	oint (3, 3) on
	this lin	ne?							
	a.	(1, 3)	b.	(2, 0)	c.	(0, 2)	d.	(1, 1)	
60.	What	is the eccentri	city of	rectangular h	yperbol	a?			
	a.	$\sqrt{2}$	b.	$\sqrt{3}$	c.	$\sqrt{5}$	d.	$\sqrt{6}$	
Consi	der the	e following fo	r the n	ext two (02)	items t	hat follow:			
Let Q	be the	image of the p	point P	(−2, 1, −5) in	the plan	x = 3x - 2y + 2	z + 1 = 0	Э.	
61.	Consi	der the follow	ing:						
	1.	The coordina	tes of (Q are (4, -3, -	-1).				
	2.	PQ is of leng	th mor	e than 8 units	•				
	3.	The point (1	, -1, -	3) is the mid	-point o	of the line seg	gment l	PQ and lies	on the given
		plane.							
	Which	of the above	statem	ents are corre	ct?				
					8	$\overline{1}$			

				By: Er. Vinay Bhabhra
	a.	1 and 2 only	b.	2 and 3 only
	c.	1 and 3 only	d.	1, 2 and 3
62.	Cons	sider the following:		
	1.	The direction ratios of the line s	egment	t PQ are < 3, -2, 2 >.
	2.	The sum of the squares of direct	tion cos	sines of the line segment PQ is unity.
	Whie	ch of the above statements is/are co	orrect?	
	a.	1 only	b.	2 only
	c.	Both 1 and 2	d.	Neither 1 or 2
Cons	sider tl	he following for the next two (02)) items	s that follow:
A li	ne L j	passes through the point P(5, -6	5, 7) a	and is parallel to the planes $x + y + z = 1$ and
2x-	y-2z	=3.		
63.	Wha	t are the direction ratios of the line	of inte	ersection of the given planes?
	a.	< 1, 4, 3 >	b.	<-1, -4, 3>
	c.	< 1, -4, 3 >	d.	< 1, -4, -3 >
64.	Wha	t is the equation of the line L?		
	a.	$\frac{x-5}{-1} = \frac{y+6}{4} = \frac{z-7}{-3}$	b.	$\frac{x+5}{-1} = \frac{y+6}{4} = \frac{z+7}{-3}$
	c.	$\frac{x-5}{-1} = \frac{y+6}{-4} = \frac{z-7}{3}$	d.	$\frac{x-5}{-1} = \frac{y+6}{-4} = \frac{z-7}{-3}$
Cons	sider tl	he following for the next two (02)) items	that follow:
Let a	$\dot{a} = \hat{i} + \hat{j}$	\hat{j} , $\vec{b} = 3\hat{i} + 4\hat{k}$ and $\vec{b} = \vec{c} + \vec{d}$, when	re \vec{c} is	parallel to \vec{a} and \vec{d} is perpendicular to \vec{a} .
65.	Wha	t is \vec{c} equal to?		
	a.	$\frac{3(\hat{i}+\hat{j})}{2}$ b. $\frac{2(\hat{i}+\hat{j})}{3}$	c.	$\frac{(\hat{i}+\hat{j})}{2} \qquad \text{d.} \qquad \frac{(\hat{i}+\hat{j})}{3}$
66.	If \vec{d}	$=x\hat{i}+y\hat{j}+z\hat{k}$, then which of the	follow	ving equations is/are correct?
	1.	y - x = 4		
	2.	2z - 3 = 0		
	Sele	ct the correct answer using the cod	e giver	1 below:
	a.	1 only	b.	2 only
	c.	Both 1 and 2	d.	Neither 1 nor 2
Cons	sider tl	he following for the next two (02)) items	that follow:
Let a	\vec{a} , \vec{b} an	d \vec{c} be three vectors such that \vec{a} +	$\vec{b} + \vec{c} =$	$\vec{0}$, and $ \vec{a} = 10$, $ \vec{b} = 6$ and $ \vec{c} = 14$.
		\geq	9	

							By:	Er. Vin <i>a</i> Mo.: 93	y Bhabhra 145-33083
67.	What	t is $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c}$	$\vec{c} + \vec{c} \cdot \vec{a}$	equal to?					
	a.	-332	b.	-166	c.	0	d.	166	
68.	What	t is the angle	betwee	n \vec{a} and \vec{b} ?					
	a.	30°	b.	45°	c.	60°	d.	75°	
69.	In a 1	right-angled t	riangle	ABC, if the h	nypoten	use $AB = p$	o, then wh	at is	
	\overrightarrow{AB} .	$\overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA}$	$\vec{A} + \vec{C}\vec{A}$	$\cdot \overrightarrow{CB}$ equal to	?				
	a.	р	b.	p^2	c.	$2p^2$	d.	$\frac{p^2}{2}$	
70.	A for	rce $\vec{F} = 3\hat{i} + 2$	$2\hat{j}-4\hat{k}$	is applied at	the poi	nt (1, -1,	2). What	is the mom	ent of the force
	abou	t the point (2,	-1, 3)	?					
	a.	$\hat{i} + 4\hat{j} + 4\hat{k}$			b.	$2\hat{i} + \hat{j} +$	$2\hat{k}$		
	c.	$2\hat{i}-7\hat{j}-2\hat{k}$	ĥ		d.	$2\hat{i}+4\hat{j}$	$-\hat{k}$		
71.	What	t is the domai	n of the	e function $f($	$f(x) = \frac{1}{\sqrt{ x }}$	$\frac{1}{x \mid -x}?$			
	a.	$(-\infty, 0)$	b.	$(0,\infty)$	c.	0 < x < 2	1	d. <i>x</i>	>1
72.	Cons	ider the follo	wing in	respect of th	e functi	on $f(x) =$	$\begin{cases} 2+x, & x \\ 2-x, & x \end{cases}$	$z \ge 0$ z < 0	
	1.	$\lim_{x\to 1} f(x) \mathrm{d} x$	bes not	exist					
	2.	f(x) is dif	ferentia	able at $x = 0$.					
	3.	f(x) is con	ntinuou	s at $x = 0$.					
	Whic	ch of the abov	ve stater	ments is/are c	correct?				
	a.	1 only	b.	3 only	c.	2 and 3	only d.	1 and 3	only
73.	Let j	$f: A \to \mathbf{R}, w$	here A	$= \boldsymbol{R} \setminus \{0\}$ is su	uch that	$f(x) = \frac{x+x}{x+x}$	$\frac{ x }{x}$. On	which one	of the following
	sets i	s $f(x)$ contin	nuous?						
	a.	A			b.	$B = \{x \in$	$\mathbf{R}: x \ge 0$	}	
	c.	$C = \{x \in \mathbf{R}\}$	$: x \leq 0 \}$		d.	$D = \mathbf{R}$			
74.	Whic	ch of the follo	wing st	tatements is c	correct in	n respect o	f the funct	tion $f(x) =$	$x^3 \sin x$?
	a.	It has local	maxim	the number of $x = 0$.					
	b.	It has local	minim	um at $x=0$.					
	c.	It has neith	er maxi	imum nor mir	nimum a	at $x=0$.			
	d.	It has maxi	mum va	alue 1.					
					10				

						By: I	Er. Vinay Bhabhra Mo.: 93145-33083
75.	Wha	t is the area bounded	by the curves	y =1	$1 - x^2$?		
	a.	4/3 square units		b.	8/3 squares	s units	
	c.	4 square units		d.	16/3 squar	e units	
Cons	sider tl	ne following functio	n for the next	two (02) items tha	t follov	v:
f(x)	$=\begin{cases} 3x^2\\ 37 \end{cases}$	$x^{2} + 12x - 1, -1 \le x \le 2$ - x, $2 < x \le 3$	2 3				
76.	Whic	ch of the following st	atements is/ar	e corre	ect?		
	1.	f(x) is increasing	in the interval	l [—1, 2	2].		
	2.	f(x) is decreasing	g in the interva	1 (2, 3].		
	Selec	ct the correct answer	using the code	e given	below:		
	a.	1 only b.	2 only	c.	Both 1 and	l 2 d.	Neither 1 nor 2
77.	Whic	ch of the following st	atements are c	orrect	?		
	1.	f(x) is continuous	s at $x = 2$.	-			
	2.	f(x) attains greate	est value at $x =$	= 2.			
	3.	f(x) is differentia	ble at $x = 2$.				
	Selec	t the correct answer	using the code	given	below:	1	
	a.	1 and 2 only		b. d	2 and 3 on 1 2 and 3	ly	
Cons	c. sider fl	ne following for the	next three (0?	u. 8) item	1, 2 and 3	7•	
Let	f(x) =	$\{ x - x - 1 \}^2$.		<i>)</i> I UCII		•	
78.	Wha	t is $f'(x)$ equal to w	hen $x > 1$?				
	а.	0 b.	2x-1	c.	4x - 2	d.	8x-4
79.	Wha	t is $f'(x)$ equal to w	hen $0 < x < 1$?				
	a.	0 b.	2x - 1	c.	4x - 2	d.	8x - 4
80.	Whic	ch of the following e	quations is/are	correc	ct?		
	1.	f'(-2) = f(5)					
	2.	f''(-2) + f'''(0.5)	+f'''(3) = 4				
	Selec	ct the correct answer	using the code	given	below:		
	a.	1 only		b.	2 only		
	c.	Both 1 and 2		d.	Neither 1 r	nor 2	
Cons	sider tl	ne following for the	next three (03	8) item	ns that follow		
Let .	f(x) =	$[x]$, where $[\cdot]$ is	the greatest in	nteger	function and	d $g(x)$	$=\sin x$ be two real valued
funct	tions ov	ver R .					

Which of the following statements is correct? 81. Both f(x) and g(x) are continuous at x = 0. a. f(x) is continuous at x=0, but g(x) is not continuous at x=0. b. g(x) is continuous at x=0, but f(x) is not continuous at x=0. c. Both f(x) and g(x) are discontinuous at x = 0. d. 82. Which one of the following statements is correct? $\lim_{x \to 0} (gof)(x)$ exists $\lim (fog)(x)$ exists a. $\lim_{x \to 0} (fog)(x) = \lim_{x \to 0} (gof)(x)$ $\lim_{x\to 0^+} (fog)(x) = \lim_{x\to 0^+} (gof)(x)$ d. c. 83. Which of the following statements are correct? (fof)(x) = f(x)1. 2. (gog)(x) = g(x) only when x = 03. (go(fog))(x) can take only three values Select the correct answer using the code given below: 1 and 2 only b. 2 and 3 only a. 1 and 3 only d. 1. 2 and 3 c. Consider the following for the next two (02) items that follow: $\frac{e^x - 1}{x}$, x > 0 be a real valued function. Let f(x) =0. x = 084. Which one of the following statements is correct? f(x) is a strictly decreasing function in (0, x). a. f(x) is a strictly increasing function in (0, x). b. f(x) is neither increasing nor decreasing in (0, x). c. f(x) is not decreasing in (0, x). d. Which of the following statements is/are correct? 85. f(x) is right continuous at x = 0. 1. f(x) is discontinuous at x = 1. 2. Select the correct answer using the code given below: Neither 1 nor 2 1 only b. 2 only c. Both 1 and 2 d. a. Consider the following for the next two (02) items that follow: Consider the parabola $y = x^2 + 7x + 2$ and the straight line y = 3x - 3. 12

						E	By:	Er. V Mo.:	inay B 93145	habhra -33083
86.	What a	are the coordi	nates of	f the point on	the par	abola which i	s clo	sest to	the straigh	t line?
	a.	(0, 2)	b.	(-2, -8)	c.	(-7, 2)	d.	(1, 1	10)	
87.	What i	s the shortest	distanc	e from the at	pove po	int on the para	abola	to the	line?	
	a.	$\frac{\sqrt{10}}{2}$	b.	$\frac{\sqrt{10}}{5}$	C.	$\frac{1}{\sqrt{10}}$	d.	$\frac{\sqrt{5}}{4}$		
Cons	ider the	following fo	or the n	ext three (03) items	that follow:				
Let f	$f(x) = \begin{cases} x \\ x \end{cases}$	$\begin{array}{ll} -2, & -3 \le x \\ x-2, & 0 < x \end{array}$	≤ 0 ≤ 3 and	g(x) = f(x)	x)+ <i>f</i>	$\overline{f}(x)$				
88.	Which	of the follow	ving stat	tements is/are	e correc	t?				
	1.	g(x) is differ	rentiabl	e at $x = 0$.						
	2.	g(x) is diffe	rentiabl	le at $x = 2$.						
	Select	the correct ar	nswer u	sing the code	given l	below:				
	a.	1 only	b.	2 only	c.	Both 1 and 2	2 d.	Nei	ther 1 nor	2
89.	What i	s the value of	f the dif	ferential coef	ficient	of $g(x)$ a $x =$	-2?			
	a.	-2	b.	0	c.	1	d.	2		
90.	Which	of the follow	ving stat	tements are co	orrect?					
	1.	g(x) is conti	inuous a	at $x = 0$.						
	2.	g(x) is conti	inuous a	at $x = 2$.						
	3.	g(x) is conti	inuous a	at $x = -1$.						
	Select	the correct ar	nswer u	sing the code	given l	below:				
	a.	1 and 2 only			b.	2 and 3 only				
01	С.	I and 3 only	•	1- 41 4	d.	1, 2 and 3				
91.	Let f	(x) be a funct	lion suc							
	$f'\left(\frac{1}{x}\right)$	$+x^3f'(x)=0$	0 . Wha	t is $\int_{-1}^{1} f(x) dx$	x equal	to?				
	a.	2f(1)	b.	0	c.	2f(-1)	d.	4f	(1)	
92.	What i	$s \int \frac{x^4 - 1}{x^2 \sqrt{x^4 + x^4}}$	$\frac{1}{x^2+1} dx$	x equal to?						
	a.	$\sqrt{\frac{x^4 + x^2 + 1}{x}}$	+ c		b.	$\sqrt{x^4 + 2 - \frac{1}{x^2}}$	- - + c			
	C.	$\sqrt{x^2 + \frac{1}{x^2} + 1}$	+c		d.	$\sqrt{\frac{x^4 - x^2 + 1}{x}}$	+ <i>c</i>			
					13	Z				

Γ

What are the degree and order respectively of the differential equation satisfying 93. $e^{y\sqrt{1-x^2}+x\sqrt{1-y^2}} = ce^x$, (where c > 0, |x| < 1, |y| < 1)? C. b. 1.2 2.1 d. 2.2 1, 1 a. What is the curve which passes through the point (1, 1) and whose slope is $\frac{2y}{x}$? 94. d. a. Circle b. Parabola c. Ellipse Hyperbola If $x dy = y dx + y^2 dy$, y > 0 and y(1) = 1, then what is y(-3) equal to? 95. a. 3 only b. -1 only d. c. Both -1 and 3Neither -1 nor 3 What is the order of the differential equation $\frac{dx}{dy} + \int y \, dx = x^3$? 96. 1 b. 2 d. Cannot be determined a. c. 3 97. Which one of the following differential equations represents the family of straight lines which are at unit distance from the origin? a. $\left(y - x\frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$ b. $\left(y + x\frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$ c. $\left(y - x\frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$ d. $\left(y + x\frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$ What is $\int e^{\sin x} \frac{x \cos^3 x - \sin x}{\cos^2 x} dx$ equal to? 98. a. $(x + \sec x)e^{\sin x} + c$ b. $(x - \sec x)e^{\sin x} + c$ c. $(x + \tan x)e^{\sin x} + c$ d. $(x - \tan x)e^{\sin x} + c$ If $\int_{0}^{\pi/2} \frac{dx}{3\cos x + 5} = k \cot^{-1} 2$, then what is the value of k? 99. 1/4c. 2 a. b. 1/21 d. What is $\int |1-x^4| dx$ equal to? 100. -232/5-116/5d. a. b. c. 116/5232/5A special dice with numbers 1, -1, 2, -2, 0 and 3 is thrown thrice. What is the probability 101. that the sum of the numbers occurring on the upper face is zero? 1/72b. 1/87/72d. 25/216 a. c. 14

102. There is 25% chance that is rains on any particular day. What is the probability that there is at least one rainy day within a period of 7 days?

a.
$$1 - \left(\frac{1}{4}\right)^7$$
 b. $\left(\frac{1}{4}\right)^7$ c. $\left(\frac{3}{4}\right)^7$ d. $1 - \left(\frac{3}{4}\right)^7$

- 103. A salesman has a 70% chance to sell a product to any customer. The behaviour of successive customers is independent. If two customers A and B enter, what is the probability that the salesman will sell the product to customer A or B?
 - a. 0.98 b. 0.91 c. 0.70 d. 0.49

104. A student appears for tests I, II and III. The student is considered successful if he passes in tests I, II or I, III or all the three. The probabilities of the student passing in tests I, II and III are m, n and 1/2 respectively. If the probability of the student to be successful is 1/2, then which one of the following is correct?

a. m(1+n) = 1 b. n(1+m) = 1

c.
$$m = 1$$
 d. $mn = 1$

- 105. Three candidates solve a question. Odds in favour of the correct answer are 5 : 2, 4 : 3 and 3:4 respectively for the three candidates. What is the probability that at least two of them solve the question correctly?
 - a. 209/343 b. 134/343 c. 149/343 d. 60/343
- 106. Consider the following statements:
 - 1. The mean and medium are equal in symmetric distribution.
 - 2. The range is the difference between the maximum value and the minimum value in the data.
 - 3. The sum of the areas of the rectangles in the histogram is equal to the total area bounded by the frequency polygon and the horizontal axis.

Which of the above statements are correct?

- a. 1 and 2 only b. 2 and 3 only
- c. 1 and 3 only d. 1, 2 and 3

107. The scores of 15 students in an examination were recorded as 10, 5, 8, 16, 18, 20, 8, 10, 16, 20, 18, 11, 16, 14 and 12. After calculating the mean, median and mode, an error is found. One of the values is wrongly written as 16 instead of 18. Which of the following measures of central tendency will change?

a.	Mean and median	b.	Median and mode
c.	Mode only	d.	Mean and mode

108. For 10 observations on price (x) and supply (y), the following data was obtained:

 $\sum x = 130$, $\sum y = 220$, $\sum x^2 = 2288$, $\sum y^2 = 5506$ and $\sum xy = 3467$.

What is the line of regression of *y* on *x*?

a. y = 0.91x + 8.74b. y = 1.02x + 8.74c. y = 1.02x - 7.02d. y = 0.91x - 7.02

109. In a study of two groups, the following results were obtained:

	Group	Group
	Α	В
Sample size	20	25
Sample mean	22	23
Sample standard deviation	10	12

Which of the following statements is correct?

a. Group A is less variable than Group B because Group A's standard deviation is smaller.

b. Group A is less variable than Group B because Group A's sample size is smaller.

c. Group A is less variable than Group B because Group A's sample mean is smaller.

d. Group A is less variable than Group B because Group A's coefficient of variation is smaller.

110. Consider the following statements in respect of class intervals of grouped frequency distribution:

1. Class intervals need not be mutually exclusive.

- 2. Class intervals should be exhaustive.
- 3. Class intervals need not be of equal width.

Which of the above statements are correct?

- a. 1 and 2 only b. 2 and 3 only
- c. 1 and 3 only d. 1, 2 and 3

111. A medicine is known to be 75% effective to cure a patient. If the medicine is given to 5 patients, what is the probability that at least one patient is cured by this medicine?

a.
$$\frac{1}{1024}$$
 b. $\frac{243}{1024}$ c. $\frac{1023}{1024}$ d. $\frac{781}{1024}$

112. For two events, A and B, it is given that $P(A) = \frac{3}{5}$, $P(B) = \frac{3}{10}$ and $P(A | B) = \frac{2}{3}$. If \overline{A} and \overline{B}

are the complementary events of A and B, then what is $P(\overline{A} | \overline{B})$ equal to?

a.
$$\frac{3}{7}$$
 b. $\frac{3}{4}$ c. $\frac{1}{3}$ d. $\frac{4}{7}$

A machine has three parts A, B and C, whose chances of being defective are 0.02, 0.10 and 113. 0.05 respectively. The machine stops working if any one of the parts becomes defective. What is the probability that the machine will not stop working? 0.06 b. 0.84 d. 0.94 a. 0.16c. Three independent events A_1 , A_2 and A_3 occur with probabilities $P(A_i) = \frac{1}{1+i}$, i = 1, 2, 3. 114. What is the probability that at least one of the three events occurs? a. $\frac{1}{4}$ b. $\frac{2}{3}$ c. $\frac{3}{4}$ d. $\frac{1}{24}$ Two variables, x and y, are uncorrelated and have standard deviations σ_x and σ_y 115. respectively. What is the correlation coefficient between x + y and x - y? $\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} s \quad b. \quad \frac{\sigma_x + \sigma_y}{2\sigma_x \sigma_y} \quad c. \quad \frac{\sigma_x^2 - \sigma_y^2}{\sigma_x^2 + \sigma_y^2} \quad d. \quad \frac{\sigma_y - \sigma_x}{\sigma_y \sigma_y}$ a. A random sample of 20 people is classified in the following table according to their ages: 116. Frequency Age 15 - 25 2 25 - 35 4 35 - 45 6 45 - 55 5 55 - 65 3 What is the mean age of this group of people? 41.0b. 41.5 42.0d. 42.5 a. c. 117. If the covariance between x and y is variance of x is 25 and variance of y is 144, then what is the correlation coefficient? 0.4b. 0.5 0.6 d. 0.7 a. c. 118. A coin is tossed three times. Consider the following events: A: No head appears **B**: Exactly one head appears C: At least two heads appear Which one of the following is correct? $(A \cup B) \cap (A \cup C) = B \cup C$ b. $(A \cap B') \cup (A \cap C') = B' \cup C'$ a. $A \cap (B' \cup C') = A \cup B \cup C$ d. $A \cap (B' \cup C') = B' \cap C'$ c. 17

- 119. In a series of 3 one-day cricket matches between teams A and B of a college, the probability of team A winning or drawing are 1/3 and 1/6 respectively. If a win, loss or draw gives 2, 0 and 1 point respectively, then what is the probability that team A will score 5 points in the series?
 - a. $\frac{17}{18}$ b. $\frac{11}{12}$ c. $\frac{1}{12}$ d. $\frac{1}{18}$

120. Let the random variable X follow B(6, p). If 16P(X = 4) = P(X = 2), then what is the value of p?

a. $\frac{1}{3}$ b. $\frac{1}{4}$ c. $\frac{1}{5}$ d. $\frac{1}{6}$

Answers Sheet (SET-A)

1.	a.	2.	a.	3.	c.	4.	c.	5.	d.	6.	d.	7.	d.
8.	c.	9.	a.	10.	d.	11.	c.	12.	d.	13.	a.	14.	d.
15.	a.	16.	b.	17.	b.	18.	a.	19.	a.	20.	b.	21.	c.
22.	b.	23.	a.	24.	a.	25.	c.	26.	d.	27.	a.	28.	d.
29.	b.	30.	b.	31.	d.	32.	b.	33.	b.	34.	d.	35.	b.
36.	c.	37.	c.	38.	c.	39.	c.	40.	a.	41.	c.	42.	a.
43.	a.	44.	d.	45.	a.	46.	d.	47.	b.	48.	a.	49.	b.
50.	b.	51.	c.	52.	a.	53.	d.	54.	a.	55.	a.	56.	d.
57.	b.	58.	a.	59.	d.	60.	a.	61.	d.	62.	a.	63.	c.
64.	a.	65.	a.	66.	d.	67.	b.	68.	c.	69.	b.	70.	c.
71.	a.	72.	b.	73.	a.	74.	c.	75.	b.	76.	c.	77.	a.
78.	a.	79.	d.	80.	a.	81.	c.	82.	d.	83.	c.	84.	b.
85.	d.	86.	b.	87.	c.	88.	d.	89.	a.	90.	d.	91.	a.
92.	c.	93.	a.	94.	b.	95.	c.	96.	b.	97.	c.	98.	b.
99.	b.	100.	d.	101.	d.	102.	d.	103.	b.	104.	a.	105.	c.
106.	d.	107.	d.	108.	b.	109.	d.	110.	d.	111.	c.	112.	a.
113.	c.	114.	c.	115.	Х	116.	b.	117.	b.	118.	d.	119.	d.
120.	c.												